scholarly journals Does Antarctic glaciation cool the world?

2012 ◽  
Vol 8 (4) ◽  
pp. 2645-2693 ◽  
Author(s):  
A. Goldner ◽  
M. Huber ◽  
R. Caballero

Abstract. In this study we compare the simulated climatic impact of adding the Antarctic Ice Sheet to the "Greenhouse World" of the Eocene and removing the Antarctic Ice Sheet from the Modern world. The Modern surface temperature anomaly (ΔT) induced by Antarctic Glaciation ranges from −1.22 to −0.18 K when CO2 is dropped from 2240 to 560 ppm, whereas the Eocene ΔT is nearly constant at −0.3 K. We calculate the climate sensitivity parameter S[Antarctica] which is defined as the change in surface temperature (ΔT) divided by the change in radiative forcing (ΔQAntarctica) imposed by prescribing the glacial properties of Antarctica. While the ΔT associated with the imposed Antarctic properties is relatively consistent across the Eocene cases, the radiative forcing is not. This leads to a wide range of S[Antarctica], with Eocene values systematically smaller than Modern. This differing temperature response in Eocene and Modern is partially due to the smaller surface area of the imposed forcing over Antarctica in the Eocene and partially due to the presence of strong positive sea-ice feedbacks in the Modern. The system's response is further mediated by differing shortwave cloud feedbacks which are large and of opposite sign operating in Modern and Eocene configurations. A negative cloud feedback warms much of the Earth's surface as a large ice sheet is introduced in Antarctica in the Eocene, whereas in the Modern this cloud feedback is positive and acts to enhance cooling introduced by adding an ice sheet. Because of the importance of cloud feedbacks in determining the final temperature sensitivity of the Antarctic Ice Sheet our results are likely to be model dependent. Nevertheless, these model results show that the radiative forcing and feedbacks induced by the Antarctic Ice Sheet did not significantly decrease global mean surface temperature across the Eocene-Oligocene transition (EOT) and that other factors like declining atmospheric CO2 are more important for cooling across the EOT. The results indicate that climate transitions associated with glaciation depend on the climate background state. This means that using paleoclimate proxy data by itself, from the EOT to estimate Earth System Sensitivity, into the future, is made difficult without relying on climate models and consequently these modelling estimates will have large uncertainty, largely due to low clouds.

2013 ◽  
Vol 9 (1) ◽  
pp. 173-189 ◽  
Author(s):  
A. Goldner ◽  
M. Huber ◽  
R. Caballero

Abstract. In this study, we compare the simulated climatic impact of adding an Antarctic ice sheet (AIS) to the "greenhouse world" of the Eocene and removing the AIS from the modern world. The modern global mean surface temperature anomaly (ΔT) induced by Antarctic Glaciation depends on the background CO2 levels and ranges from −1.22 to −0.18 K. The Eocene ΔT is nearly constant at ~−0.25 K. We calculate an climate sensitivity parameter S[Antarctica] which we define as ΔT divided by the change in effective radiative forcing (ΔQAntarctica) which includes some fast feedbacks imposed by prescribing the glacial properties of Antarctica. The main difference between the modern and Eocene responses is that a negative cloud feedback warms much of the Earth's surface as a large AIS is introduced in the Eocene, whereas this cloud feedback is weakly positive and acts in combination with positive sea-ice feedbacks to enhance cooling introduced by adding an ice sheet in the modern. Because of the importance of cloud feedbacks in determining the final temperature sensitivity of the AIS, our results are likely to be model dependent. Nevertheless, these model results suggest that the effective radiative forcing and feedbacks induced by the AIS did not significantly decrease global mean surface temperature across the Eocene–Oligocene transition (EOT −34.1 to 33.6 Ma) and that other factors like declining atmospheric CO2 are more important for cooling across the EOT. The results illustrate that the efficacy of AIS forcing in the Eocene is not necessarily close to one and is likely to be model and state dependent. This implies that using EOT paleoclimate proxy data by itself to estimate climate sensitivity for future climate prediction requires climate models and consequently these estimates will have large uncertainty, largely due to uncertainties in modelling low clouds.


2021 ◽  
Author(s):  
Elise Kazmierczak ◽  
Sainan Sun ◽  
Frank Pattyn

<p>Sliding laws determine to a large extent the sensitivity of the Antarctic ice sheet on centennial time scales (Pattyn, 2017, Bulthuis et al, 2019, Sun et al, 2020). Especially the contrast between linear and plastic sliding laws makes the latter far more responsive to changes at the grounding line. However, most studies neglect subglacial processes linked to those sliding laws. Subglacial hydrology may also play a role in modulating the amplitude of the reaction of marine ice sheets to forcing. Subglacial processes influence the effective pressure at the base. For a hard bed system, the latter can be defined by the ice overburden pressure minus the subglacial water pressure determined by routing of subglacial meltwater through a thin film. For soft-bed systems, the effective pressure is determined from till properties and physics. Here we investigate a wide range of subglacial processes and hydrology used in ice sheet models and implemented them in one ice sheet model (f.ETISh).</p><p> </p><p>The subglacial hydrology models and till deformation models are coupled to different sliding and friction laws (linear, power law, Coulomb), leading to 24 different representations. The Antarctic ice sheet model was then forced by the ISMIP6 forcing in surface mass balance and ocean temperature until 2100 for different RCP scenarios (Seroussi et al., 2020). Furthermore, to sample the intrinsic sensitivity we performed the ABUMIP experiments (Sun et al., 2020) for the full set of subglacial characteristics.  Results demonstrate that the type of sliding law is the most determining factor in the sensitivity of the ice sheet, modulated by the subglacial hydrology.</p>


1995 ◽  
Vol 21 ◽  
pp. 144-148
Author(s):  
Garth W. Paltridge ◽  
Christopher M. Zweck

A simple steady-state energy and mass-balance model of the Antarctic ice sheet is developed. Basically it is a set of two equations with two unknowns of steady-state height h and potential basal temperature Tb. Tb determines whether, and to what extent, there is liquid water at the base of the ice which in turn affects the values of h and Tb. Simultaneous changes of sea-level temperature and precipitation (changes related to each other as might be expected from global climate models) indicate a maximum in the field of possible steady-state ice volumes which may not be far from the presently observed conditions. The possibility of cyclical variation in ground heat flux associated with convection of water and heat in the continental crust is discussed. The mechanism might be capable of generating cycles of ice-sheet volume with relatively short periods similar to those of Milankovitch forcing.


1982 ◽  
Vol 3 ◽  
pp. 343
Author(s):  
V.R. Barbash ◽  
I.A. Zotikov

The heat regime and dynamics of the Antarctic ice sheet are studied using numerical modelling for two flow lines, one of which passes Vostok station and the other Byrd station. A two-dimensional non-steady heat-transfer equation with an energy dissipation term was used. The study consists of two parts. The first is a study of velocity and temperature distributions within the glacier under steady-state conditions. The second study was performed assuming surface temperature changes intended to model palaeoclimatic changes for the last 100 ka and also to model future climate changes due to a possible "greenhouse" effect. Computer numerical modelling shows that the Antarctic ice sheet retains a record of the climatic temperature minimum 18 ka BP. Numerical modelling of the greenhouse effect assumes a temperature increasing by 10 deg within the next 100 a; its influence increases after this even if the surface temperature then remains the same for the next 20 ka. It is shown that for the next 1 ka the temperature wave will penetrate only a thin surface layer of the ice. Even in 20 ka the bottom temperature of the ice sheet will still be unchanged. Small increases of ice velocity can produce ice-sheet thinning of the order of 10 mm a−1.


2019 ◽  
Vol 32 (20) ◽  
pp. 6899-6915 ◽  
Author(s):  
A. Gossart ◽  
S. Helsen ◽  
J. T. M. Lenaerts ◽  
S. Vanden Broucke ◽  
N. P. M. van Lipzig ◽  
...  

Abstract In this study, we evaluate output of near-surface atmospheric variables over the Antarctic Ice Sheet from four reanalyses: the new European Centre for Medium-Range Weather Forecasts ERA-5 and its predecessor ERA-Interim, the Climate Forecast System Reanalysis (CFSR), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The near-surface temperature, wind speed, and relative humidity are compared with datasets of in situ observations, together with an assessment of the simulated surface mass balance (approximated by precipitation minus evaporation). No reanalysis clearly stands out as the best performing for all areas, seasons, and variables, and each of the reanalyses displays different biases. CFSR strongly overestimates the relative humidity during all seasons whereas ERA-5 and MERRA-2 (and, to a lesser extent, ERA-Interim) strongly underestimate relative humidity during winter. ERA-5 captures the seasonal cycle of near-surface temperature best and shows the smallest bias relative to the observations. The other reanalyses show a general temperature underestimation during the winter months in the Antarctic interior and overestimation in the coastal areas. All reanalyses underestimate the mean near-surface winds in the interior (except MERRA-2) and along the coast during the entire year. The winds at the Antarctic Peninsula are overestimated by all reanalyses except MERRA-2. All models are able to capture snowfall patterns related to atmospheric rivers, with varying accuracy. Accumulation is best represented by ERA-5, although it underestimates observed surface mass balance and there is some variability in the accumulation over the different elevation classes, for all reanalyses.


2020 ◽  
Author(s):  
James O'Neill ◽  
Tamsin Edwards ◽  
Lauren Gregoire ◽  
Niall Gandy ◽  
Aisling Dolan ◽  
...  

<p>The Antarctic ice sheet is a deeply uncertain component of future sea level under anthropogenic climate change. To shed light on the ice sheets response to warmer climates in the past and its’ response to future warming, periods in Earth’s geological record can serve as instructive modelling targets. The mid-Pliocene warm period (3.3 – 3.0 Ma) is characterised by global mean surface temperatures ~2.7-4<sup>o</sup>C above pre-industrial, atmospheric CO<sub>2</sub> concentrations of ~400ppm and eustatic sea level rise on the order of ~10-30m above modern. The mid-Pliocene sea level record is subject to large uncertainties. The upper end of this record implies a significant contribution from Antarctica and possible collapse of regions of the ice sheet, driven by marine ice sheet instabilities.</p><p>We present a suite of BISICLES ice sheet model simulations, forced with a subset of Pliocene Modelling Intercomparison Project (PlioMIP phase 1) coupled atmosphere-ocean climate models, that represent the Pliocene Antarctic ice sheet. This ensemble captures a range of possible ice sheet model responses to a warm Pliocene-like climate under different parameter choices, sampled in a Latin hypercube design. Modelled Antarctic sea level contribution is compared to reconstructions of Pliocene sea level, to explore the extent to which available data with large uncertainties can constrain the model parameter values.</p><p>Our aim with this work is to provide insights on Antarctic contribution to sea level in the warm mid-Pliocene. We seek to characterise the role of ice-ocean, ice-atmosphere and ice-bedrock parameter uncertainty in BISICLES on the ice sheet sea level contribution range, and whether cliff instability processes are necessary in reproduce high Pliocene sea levels in this ice sheet model.</p>


2018 ◽  
Author(s):  
Jingang Zhan ◽  
Hongling Shi ◽  
Yong Wang ◽  
Yixin Yao ◽  
Yongbin Wu

Abstract. The ice record should have recorded and will likely reflect information on environmental changes such as atmospheric circulation. In this paper, 153 months of Gravity Recovery and Climate Experiment (GRACE) satellite time-varying gravity solutions were used to study the principal components of the Antarctic ice sheet mass change and their time-frequency variation. This assessment is based on complex principal component analysis and the wavelet amplitude-period spectrum method to reveal the main climatic factors that affect the change on the ice sheet. The complex principal component analysis results reveal the principal components that affect the mass change of the ice sheet; the wavelet analysis present the time-frequency variation of each component and the possible relationship between each principal component and different climatic factors. The results show that the specific climate factors represented by low-frequency signals with a period greater than 5 years dominate the changes of the Antarctic ice sheet mass balance. These climate factors are related to the abnormal sea surface temperature changes in the equatorial Pacific (Niño 1+2 region), the correlation between the low-frequency periodic signal of sea surface temperature anomalies in the equatorial Pacific and the first principal component of the ice sheet mass change in Antarctica is 0.65. The first principal component explains 85.45 % of the mass change in the ice sheet. The change in the meridional wind at 700 hPa in the South Pacific may be the key factor that determines the effect of sea surface temperature anomalies in the equatorial Pacific on the Antarctic ice sheet. The atmospheric temperature change in Antarctica is the second most important factor that affects the mass balance of the ice sheet in the area, and its contribution to the mass balance of the ice sheet is only 6.35 %. This result means that with the increase of low-frequency signals during the El Niño period, Antarctic ice sheet mass changes may intensify.


2019 ◽  
Author(s):  
Quentin Dalaiden ◽  
Hugues Goosse ◽  
François Klein ◽  
Jan T. M. Lenaerts ◽  
Max Holloway ◽  
...  

Abstract. Improving our knowledge of the temporal and spatial variability of the Antarctic Ice Sheet (AIS) Surface Mass Balance (SMB) is crucial to reduce the uncertainties of past, present and future Antarctic contributions to sea level rise. Here, we show that Global Climate Models (GCMs) can reproduce the present-day (1979–2005) AIS SMB and the temporal variations over the last two centuries. An examination of the surface temperature–SMB relationship in model simulations demonstrates a strong link between the two. Reconstructions based on ice cores display a weaker relationship, indicating a model-data discrepancy that may be due to model biases or to the non-climatic noise present in the records. We find that, on the regional scale, the modelled temperature-SMB relationship is stronger than the relationship between δ18O-temperature. This suggests that SMB data can be used to reconstruct past surface temperatures. Using this finding, we assimilate isotope-enabled model SMB and δ18O output with ice-core observations, to generate a new surface temperature reconstruction. Although an independent evaluation of the skill is difficult because of the short observational time series, this new reconstruction outperforms the previous reconstructions for the continental-mean temperature that were based on δ18O alone with a linear correlation coefficient with the observed surface temperatures (1958–2010 CE) of 0.73. The improvement is largest for the East Antarctic region, where the uncertainties are particularly large. Finally, we provide a spatial SMB reconstruction of the AIS over the last two centuries showing 1) large variability in SMB trends at regional scale; and 2) a large SMB increase (0.82 Gt year−2) in West Antarctica over 1957–2000 while at the same time, East Antarctica has experienced a large SMB decrease (−3.3 Gt year−2), which is consistent with a recent reconstruction.


1989 ◽  
Vol 12 ◽  
pp. 16-22 ◽  
Author(s):  
W.F. Budd ◽  
D. Jenssen

A three-dimensional dynamic, thermodynamic ice-sheet model has been developed to simulate the past, present, and future behaviour of the Antarctic ice sheet. The present ice velocities depend on the deep ice temperatures which in turn depend on the past changes of the ice sheet, including surface temperature, accumulation rate, and ice thickness. The basal temperatures are also strongly dependent on the geothermal heat flux. The model has therefore been used to study the effect on the basal temperatures, of changes to the geothermal heat flux, as well as the past changes of surface temperature and accumulation rate based on results obtained from the Vostok deep ice core. The model is also used to compute the distribution of surface velocity required to balance the present accumulation rate and the dynamics velocity based on the stress, temperature, and flow properties of ice, for the internal deformation, plus a component due to ice sliding. These velocities are compared to observed surface velocities in East Antarctica to assess the state of balance and the performance of the dynamics formulation.


1988 ◽  
Vol 11 ◽  
pp. 32-35 ◽  
Author(s):  
Klaus Herterich

A preliminary version of a three-dimensional ice-sheet model for later use in climate models, but excluding ice shelves and basal sliding, is presented and applied to the Antarctic ice sheet. In the model, the three-dimensional fields of velocity and temperature are calculated in the coupled mode, and the temperature equation is integrated for 150 000 years; the shape of the Antarctic ice sheet remains fixed. The results from the model are consistent with a stationary state in the central parts of the Antarctic ice sheet, but not in marginal areas, where the flow in the model is too small. Including a parameterized form of basal sliding that is dependent on the water pressure is likely to improve the situation.


Sign in / Sign up

Export Citation Format

Share Document