Influence of Cold Air Intrusions on the Wet Season Onset over Amazonia

2006 ◽  
Vol 19 (2) ◽  
pp. 257-275 ◽  
Author(s):  
Wenhong Li ◽  
Rong Fu

Abstract Using 15-yr data from the European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-15), the authors found that rapid southeastward expansion of the rainy area from the western Amazon to southeastern Brazil is a result of midlatitude cold air intrusions. During austral spring, as the large-scale thermodynamic structure over Amazonia becomes destabilized, the incursions of extratropical cold air can trigger intense rainfall along the leading edge of northwest–southeast-oriented cold fronts east of the Andes. As these fronts penetrate into Amazonia, the northerly or northwesterly wind transports warm, moist air from the western Amazon to southeast Brazil. Moisture convergence consequently intensifies, resulting in northwest–southeast-elongated rainy areas. The latter contribute to the observed rapid, southeastward expansion of rainy areas shown in rainfall climatology during austral spring. The authors’ analysis suggests that cold air intrusions during austral spring collectively assist the transformation of large-scale thermodynamic and dynamic environments to those favorable for the wet season onsets. Each time the cold fronts pass by, they tend to increase the atmospheric humidity and the buoyancy of the lower troposphere, which destabilizes the atmosphere. In the upper troposphere, the cold air intrusions supply kinetic energy for the development of anticyclonic flow. Cold air intrusions in the transitional season are not different from those occurring immediately before the wet season onsets except that the latter occurs under a more humid and unstable atmospheric condition. Thus, cold air intrusions can trigger the wet season onsets only when atmospheric and land surface conditions are “ready” for the onset. Comparisons among early, normal, and late onsets on an interannual scale further suggest that more frequent and stronger cold air intrusions trigger the early onsets of wet seasons given suitable large-scale thermodynamic conditions. Likewise, less frequent and weaker cold air intrusions could delay the wet season onset even though the large-scale thermodynamic conditions appear to be favorable. Occasionally, strong unstable atmospheric thermodynamic conditions and northerly reversal of cross-equatorial flow can lead to wet season onsets without cold air intrusions. In such cases, enhanced precipitation is centered over central and eastern Amazon, and rainfall increases more gradually compared to the onset with cold air intrusions.

Author(s):  
Jose A. Marengo ◽  
Carlos A. Nobre

The Amazon region is of particular interest because it represents a large source of heat in the tropics and has been shown to have a significant impact on extratropical circulation, and it is Earth’s largest and most intense land-based convective center. During the Southern Hemisphere summer when convection is best developed, the Amazon basin is one of the wettest regions on Earth. Amazonia is of course not isolated from the rest of the world, and a global perspective is needed to understand the nature and causes of climatological anomalies in Amazonia and how they feed back to influence the global climate system. The Amazon River system is the single, largest source of freshwater on Earth. The flow regime of this river system is relatively unimpacted by humans (Vörösmarty et al. 1997 a, b) and is subject to interannual variability in tropical precipitation that ultimately is translated into large variations in downstream hydrographs (Marengo et al. 1998a, Vörösmarty et al. 1996, Richey et al. 1989a, b). The recycling of local evaporation and precipitation by the forest accounts for a sizable portion of the regional water budget (Nobre et al. 1991, Eltahir 1996), and as large areas of the basin are subject to active deforestation there is grave concern about how such land surface disruptions may affect the water cycle in the tropics (see reviews in Lean et al. 1996). Previous studies have emphasized either how large-scale atmospheric circulation or land surface conditions can directly control the seasonal changes in rainfall producing mechanisms. Studies invoking controls of convection and rainfall by large-scale circulation emphasize the relationship between the establishment of upper-tropospheric circulation over Bolivia and moisture transport from the Atlantic ocean for initiation of the wet season and its intensity (see reviews in Marengo et al. 1999). On the other hand, Eltahir and Pal (1996) have shown that Amazon convection is closely related to land surface humidity and temperature, while Fu et al. (1999) indicate that the wet season in the Amazon basin is controlled by both changes in land surface temperature and the sea surface temperature (SST) in the adjacent oceans, depending if the region is north-equatorial or southern Amazonia.


2008 ◽  
Vol 8 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Y. Q. Yang ◽  
Q. Hou ◽  
C. H. Zhou ◽  
H. L. Liu ◽  
Y. Q. Wang ◽  
...  

Abstract. This paper introduces a definition of sand/dust storm process as a new standard and idea of sand/dust storm (SDS) groups a number of SDS-events in Northeast Asia. Based on the meteorological data from WMO/GOS network, 2456 Chinese surface stations and NCEP-NCAR reanalysis, the sand/dust storm processes in Northeast Asia in spring 2000–2006 are investigated. And the evolutions of anomalies of general circulation in the troposphere are analyzed by comparing the spring having most and least occurrences of SDS in year 2006 and 2003. Associated with the noticeably increased occurrence of SDS processes in spring 2006, the anomalies in 3-D structure of general circulation especially in the mid-and high latitudes of the Northen Hemisphere (NH) are revealed. The transition period from the winter of 2005 to spring 2006 has witnessed a fast-developed high center over the circumpolar vortex area in the upper troposphere, which pushes the polar vortex more southwards to mid-latitudes with a more extensive area over the east NH. In spring 2006, there are the significant circulation anomalies in the middle troposphere from the Baikal Lake to northern China with a stronger southward wind anomaly over Northeast Asia. Compared with a normal year, stronger meridional wind with a southward wind anomaly also in the lower troposphere prevail over the arid and semiarid regions in Mongolia and northern China during spring 2006. The positive anomalies of surface high pressure registered an abnormal high of 4–10 hPa in the Tamil Peninsular make a stronger cold air source for the repeated cold air outbreak across the desert areas in spring 2006 resulting in the most frequent SDS seasons in the last 10 years in Northeast Asia.


2020 ◽  
Vol 33 (3) ◽  
pp. 1155-1176 ◽  
Author(s):  
Michael G. Bosilovich ◽  
Franklin R. Robertson ◽  
Paul W. Stackhouse

AbstractAlthough El Niño events each have distinct evolutionary character, they typically provide systematic large-scale forcing for warming and increased drought frequency across the tropical continents. We assess this response in the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis and in a 10-member-model Atmospheric Model Intercomparison Project (AMIP) ensemble. The lagged response (3–4 months) of mean tropical land temperature to El Niño warming in the Pacific Ocean is well represented. MERRA-2 reproduces the patterns of precipitation in the tropical regions, and the AMIP ensemble reproduces some regional responses that are similar to those observed and some regions that are not simulating the response well. Model skill is dependent on event forcing strength and temporal proximity to the peak of the sea surface warming. A composite approach centered on maximum Niño-3.4 SSTs and lag relationships to energy fluxes and transports is used to identify mechanisms supporting tropical land warming. The composite necessarily moderates weather-scale variability of the individual events while retaining the systematic features across all events. We find that reduced continental upward motions lead to reduced cloudiness and more shortwave radiation at the surface, as well as reduced precipitation. The increased shortwave heating at the land surface, along with reduced soil moisture, leads to warmer surface temperature, more sensible heating, and warming of the lower troposphere. The composite provides a broad picture of the mechanisms governing the hydrologic response to El Niño forcing, but the regional and temporal responses can vary substantially for any given event. The 2015/16 El Niño, one of the strongest events, demonstrates some of the forced response noted in the composite, but with shifts in the evolution that depart from the composite, demonstrating the limitations of the composite and individuality of El Niño.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Stella Gachoki ◽  
Thomas Groen ◽  
Anton Vrieling ◽  
Michael Okal ◽  
Andrew Skidmore ◽  
...  

Abstract Background African trypanosomiasis, which is mainly transmitted by tsetse flies (Glossina spp.), is a threat to public health and a significant hindrance to animal production. Tools that can reduce tsetse densities and interrupt disease transmission exist, but their large-scale deployment is limited by high implementation costs. This is in part limited by the absence of knowledge of breeding sites and dispersal data, and tools that can predict these in the absence of ground-truthing. Methods In Kenya, tsetse collections were carried out in 261 randomized points within Shimba Hills National Reserve (SHNR) and villages up to 5 km from the reserve boundary between 2017 and 2019. Considering their limited dispersal rate, we used in situ observations of newly emerged flies that had not had a blood meal (teneral) as a proxy for active breeding locations. We fitted commonly used species distribution models linking teneral and non-teneral tsetse presence with satellite-derived vegetation cover type fractions, greenness, temperature, and soil texture and moisture indices separately for the wet and dry season. Model performance was assessed with area under curve (AUC) statistics, while the maximum sum of sensitivity and specificity was used to classify suitable breeding or foraging sites. Results Glossina pallidipes flies were caught in 47% of the 261 traps, with teneral flies accounting for 37% of these traps. Fitted models were more accurate for the teneral flies (AUC = 0.83) as compared to the non-teneral (AUC = 0.73). The probability of teneral fly occurrence increased with woodland fractions but decreased with cropland fractions. During the wet season, the likelihood of teneral flies occurring decreased as silt content increased. Adult tsetse flies were less likely to be trapped in areas with average land surface temperatures below 24 °C. The models predicted that 63% of the potential tsetse breeding area was within the SHNR, but also indicated potential breeding pockets outside the reserve. Conclusion Modelling tsetse occurrence data disaggregated by life stages with time series of satellite-derived variables enabled the spatial characterization of potential breeding and foraging sites for G. pallidipes. Our models provide insight into tsetse bionomics and aid in characterising tsetse infestations and thus prioritizing control areas. Graphical abstract


2005 ◽  
Vol 9 (20) ◽  
pp. 1-44 ◽  
Author(s):  
Ana M. B. Nunes ◽  
John O. Roads

Abstract Although large-scale atmospheric reanalyses are now providing physical, realistic fields for many variables, precipitation remains problematic. As shown in recent studies, using a regional model to downscale the global reanalysis only marginally alleviates the precipitation simulation problems. For this reason, later-generation analyses, including the recent National Centers for Environmental Prediction regional reanalysis, are using precipitation assimilation as a methodology to provide superior precipitation fields. This methodology can also be applied to regional model simulations to substantially improve the precipitation fields downscaled from global reanalysis. As an illustration of the regional model precipitation assimilation impact, the authors describe here an extended-range simulation comparison over South America. The numerical experiments cover the beginning of the Large-Scale Biosphere–Atmosphere wet season campaign of January 1999. Evaluations using radiosonde datasets obtained during this campaign are provided as well. As will be shown, rain-rate assimilation not only increases the regional model precipitation simulation skill but also provides improvements in other fields influenced by the precipitation. Because of the potential impact on land surface features, the authors believe they will ultimately be able to show improvements in monthly to seasonal forecasts when precipitation assimilation is used to generate more accurate land surface initial conditions.


2017 ◽  
Vol 30 (15) ◽  
pp. 5637-5660 ◽  
Author(s):  
Spencer A. Hill ◽  
Yi Ming ◽  
Isaac M. Held ◽  
Ming Zhao

Climate models generate a wide range of precipitation responses to global warming in the African Sahel, but all that use the NOAA Geophysical Fluid Dynamics Laboratory AM2.1 model as their atmospheric component dry the region sharply. This study compares the Sahel’s wet season response to uniform 2-K SST warming in AM2.1 using either its default convective parameterization, relaxed Arakawa–Schubert (RAS), or an alternate, the University of Washington (UW) parameterization, using the moist static energy (MSE) budget to diagnose the relevant mechanisms. UW generates a drier, cooler control Sahel climate than does RAS and a modest rainfall increase with SST warming rather than a sharp decrease. Horizontal advection of dry, low-MSE air from the Sahara Desert—a leading-order term in the control MSE budget with either parameterization—is enhanced with oceanic warming, driven by enhanced meridional MSE and moisture gradients spanning the Sahel. With RAS, this occurs throughout the free troposphere and is balanced by anomalous MSE import through anomalous subsidence, which must be especially large in the midtroposphere where the moist static stability is small. With UW, the strengthening of the meridional MSE gradient is mostly confined to the lower troposphere, due in part to comparatively shallow prevailing convection. This necessitates less subsidence, enabling convective and total precipitation to increase with UW, although both large-scale precipitation and precipitation minus evaporation decrease. This broad set of hydrological and energetic responses persists in simulations with SSTs varied over a wide range.


1999 ◽  
Vol 17 (8) ◽  
pp. 1095-1110 ◽  
Author(s):  
A. J. Dolman ◽  
M. A. Silva Dias ◽  
J.-C. Calvet ◽  
M. Ashby ◽  
A. S. Tahara ◽  
...  

Abstract. As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture) poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions) · Meterology and atmospheric dynamics (mesoscale meterology)


2020 ◽  
Author(s):  
Luana Basso ◽  
Luciana Gatti ◽  
Luciano Marani ◽  
Henrique Cassol ◽  
Graciela Tejada ◽  
...  

<p>Wetland emissions are considered the main natural global Methane (CH<sub>4</sub>) source, but it is budget remains highly uncertain. Tropical regions like the Amazon, host some of the largest wetlands/seasonally flooded areas on the globe. However, tropical regions are still poorly observed with large-scale integrating observations. Here we present the first atmospheric sampling of the lower troposphere over the Amazon using regular vertical profile greenhouse gas and carbon monoxide (CO) observations at four sites. Since 2010 we collected bimonthly CH<sub>4</sub>, to provide solid seasonal and annual CH<sub>4</sub> budgets with large spatial resolution. Vertical profiles are sampled using light aircraft, high-precision greenhouse gas and CO analysis of flask air, fortnightly between 2010 to 2018. The results show a regional variation in CH<sub>4</sub> emissions. There are comparably high emissions from the northeast part of the Amazon exhibiting strong variability, with particularly high CH<sub>4</sub> fluxes in the beginning of the wet season (January to March). A second period of high emissions occurs during the dry season. The cause of the high emissions is unclear. In the other three sites located further downwind along the main air-stream are observed lower emissions, that represents approximately 25-30% of what is observed in the northeast region and with a clear annual seasonality. In addition, these data show an interannual variability in emissions magnitude, so we discuss how these data can be correlate to climate variables (like temperature and precipitation) and with human-driven changes (like biomass burning) that could be influencing this variability. Over the full period the Amazon (total area of around 7.2 million km<sup>2</sup>) was a source of CH<sub>4</sub>, of approximately 46 ± 6 Tg/year, which represent 8% of the global CH<sub>4</sub> flux to the atmosphere. Using a CO/CH<sub>4</sub> emission ratio calculated in this study we find a biomass burning contribution varying between 10 and 23% of the total flux at each site.</p><p> </p><p>Acknowledgment: FAPESP (2019/23654-2, 2018/14006-4, 2016/02018-2, 2008/58120-3, 2011/51841-0), NASA, ERC (GEOCARBON, Horizon 2020/ASICA), NERC (NE/F005806/1), CNPq (480713/2013-8).</p>


2021 ◽  
Vol 13 (5) ◽  
pp. 874
Author(s):  
Yu Chen ◽  
Mohamed Ahmed ◽  
Natthachet Tangdamrongsub ◽  
Dorina Murgulet

The Nile River stretches from south to north throughout the Nile River Basin (NRB) in Northeast Africa. Ethiopia, where the Blue Nile originates, has begun the construction of the Grand Ethiopian Renaissance Dam (GERD), which will be used to generate electricity. However, the impact of the GERD on land deformation caused by significant water relocation has not been rigorously considered in the scientific research. In this study, we develop a novel approach for predicting large-scale land deformation induced by the construction of the GERD reservoir. We also investigate the limitations of using the Gravity Recovery and Climate Experiment Follow On (GRACE-FO) mission to detect GERD-induced land deformation. We simulated three land deformation scenarios related to filling the expected reservoir volume, 70 km3, using 5-, 10-, and 15-year filling scenarios. The results indicated: (i) trends in downward vertical displacement estimated at −17.79 ± 0.02, −8.90 ± 0.09, and −5.94 ± 0.05 mm/year, for the 5-, 10-, and 15-year filling scenarios, respectively; (ii) the western (eastern) parts of the GERD reservoir are estimated to move toward the reservoir’s center by +0.98 ± 0.01 (−0.98 ± 0.01), +0.48 ± 0.00 (−0.48 ± 0.00), and +0.33 ± 0.00 (−0.33 ± 0.00) mm/year, under the 5-, 10- and 15-year filling strategies, respectively; (iii) the northern part of the GERD reservoir is moving southward by +1.28 ± 0.02, +0.64 ± 0.01, and +0.43 ± 0.00 mm/year, while the southern part is moving northward by −3.75 ± 0.04, −1.87 ± 0.02, and −1.25 ± 0.01 mm/year, during the three examined scenarios, respectively; and (iv) the GRACE-FO mission can only detect 15% of the large-scale land deformation produced by the GERD reservoir. Methods and results demonstrated in this study provide insights into possible impacts of reservoir impoundment on land surface deformation, which can be adopted into the GERD project or similar future dam construction plans.


Sign in / Sign up

Export Citation Format

Share Document