scholarly journals Spring Mixing: Turbulence and Internal Waves during Restratification on the New England Shelf

2005 ◽  
Vol 35 (12) ◽  
pp. 2425-2443 ◽  
Author(s):  
J. A. MacKinnon ◽  
M. C. Gregg

Abstract Integrated observations are presented of water property evolution and turbulent microstructure during the spring restratification period of April and May 1997 on the New England continental shelf. Turbulence is shown to be related to surface mixed layer entrainment and shear from low-mode near-inertial internal waves. The largest turbulent diapycnal diffusivity and associated buoyancy fluxes were found at the bottom of an actively entraining and highly variable wind-driven surface mixed layer. Away from surface and bottom boundary layers, turbulence was systematically correlated with internal wave shear, though the nature of that relationship underwent a regime shift as the stratification strengthened. During the first week, while stratification was weak, the largest turbulent dissipation away from boundaries was coincident with shear from mode-1 near-inertial waves generated by passing storms. Wave-induced Richardson numbers well below 0.25 and density overturning scales of several meters were observed. Turbulent dissipation rates in the region of peak shear were consistent in magnitude with several dimensional scalings. The associated average diapycnal diffusivity exceeded 10−3 m2 s−1. As stratification tripled, Richardson numbers from low-mode internal waves were no longer critical, though turbulence was still consistently elevated in patches of wave shear. Kinematically, dissipation during this period was consistent with the turbulence parameterization proposed by MacKinnon and Gregg, based on a reinterpretation of wave–wave interaction theory. The observed growth of temperature gradients was, in turn, consistent with a simple one-dimensional model that vertically distributed surface heat fluxes commensurate with calculated turbulent diffusivities.

2005 ◽  
Vol 18 (12) ◽  
pp. 1925-1941 ◽  
Author(s):  
Keith Haines ◽  
Chris Old

Abstract A study of thermally driven water mass transformations over 100 yr in the ocean component of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is presented. The processes of surface-forced transformations, subduction and mixing, both above and below the winter mixed layer base, are quantified. Subtropical Mode Waters are formed by surface heat fluxes and subducted at more or less the same rate. However, Labrador Seawater and Nordic Seawater classes (the other main subduction classes) are primarily formed by mixing within the mixed layer with very little formation directly from surface heat fluxes. The Subpolar Mode Water classes are dominated by net obduction of water back into the mixed layer from below. Subtropical Mode Water (18°C) variability shows a cycle of formation by surface fluxes, subduction ∼2 yr later, followed by mixing with warmer waters below the winter mixed layer base during the next 3 yr, and finally obduction back into the mixed layer at 21°C, ∼5 yr after the original formation. Surface transformation of Subpolar Mode Waters, ∼12°C, are led by surface transformations of warmer waters by up to 5 yr as water is transferred from the subtropical gyre. They are also led by obduction variability from below the mixed layer, by ∼2 yr. The variability of obduction in Subpolar Mode Waters also appears to be preceded, by 3–5 yr, by variability in subduction of Labrador Sea Waters at ∼6°C. This supports a mechanism in which southward-propagating Labrador seawater anomalies below the subpolar gyre can influence the upper water circulation and obduction into the mixed layer.


2002 ◽  
Vol 451 ◽  
pp. 109-144 ◽  
Author(s):  
KEVIN G. LAMB

The formation of solitary internal waves with trapped cores via shoaling is investigated numerically. For density fields for which the buoyancy frequency increases monotonically towards the surface, sufficiently large solitary waves break as they shoal and form solitary-like waves with trapped fluid cores. Properties of large-amplitude waves are shown to be sensitive to the near-surface stratification. For the monotonic stratifications considered, waves with open streamlines are limited in amplitude by the breaking limit (maximum horizontal velocity equals wave propagation speed). When an exponential density stratification is modified to include a thin surface mixed layer, wave amplitudes are limited by the conjugate flow limit, in which case waves become long and horizontally uniform in the centre. The maximum horizontal velocity in the limiting wave is much less than the wave's propagation speed and as a consequence, waves with trapped cores are not formed in the presence of the surface mixed layer.


2005 ◽  
Vol 18 (23) ◽  
pp. 4937-4954 ◽  
Author(s):  
Ken Takahashi

Abstract The relative importance of the processes responsible for the annual cycle in the upper-ocean heat content in the Peru Current, in the southeastern tropical Pacific, was diagnosed from an oceanic analysis dataset. It was found that the annual cycle of heat content is forced mainly by insolation. However, the ocean dynamical processes play an important role in producing different regional budget characteristics. In a band 500 km from the coast of Peru, the annual heat content changes in this region are relatively large and can be approximated as sea surface temperature (SST) changes in a fixed-depth mixed layer. The annual cycle of the albedo associated with low-level clouds enhances the annual cycle in insolation, which explains the relatively strong annual cycle of heat content. These clouds, to a large extent, act as a feedback to SST, but a small additional forcing, which is proposed to be cold air advection in this paper, is needed to explain the fact that the maximum cloudiness leads the lowest SST by around a month. Ocean dynamics is important closer to the coast, where upwelling acts partly as damping of the heat content changes and forces it to peak earlier than farther offshore. In a band farther to the southwest, locally wind-forced thermocline motions, which become shallower (deeper) in the warm (cool) season, partially cancel the effect of net surface heat fluxes, whose annual cycle is comparable to that in the region previously mentioned, producing a relatively small annual cycle of heat content. The local forcing appears to be associated with the annual meridional displacements of the South Pacific anticyclone. The annual cycle in SST is also relatively small, which is probably due to the changes in the temperature of the water entrained into the mixed layer associated with the thermocline motions, but also to a mixed layer deeper than that closer to the coast.


2021 ◽  
Author(s):  
Mareike Körner ◽  
Peter Brandt ◽  
Marcus Dengler

<p>The Angolan shelf system represents a highly productive ecosystem that exhibits pronounced seasonal variability. Productivity peaks in austral winter when seasonally prevailing upwelling favorable winds are weakest. Thus, other processes than local wind-driven upwelling contribute to the near-coastal cooling and nutrient supply during this season. Possible processes that lead to changes of the mixed-layer heat content does not only include local mechanism but also the passage of remotely forced coastally trapped waves. Understanding the driving mechanism of changes in the mixed-layer heat content that may be locally or remotely forced are vital for understanding of upward nutrient supply and biological productivity off Angola. Here, we investigate the seasonal mixed layer heat budget by analyzing atmospheric and oceanic causes for heat content variability. We calculate monthly estimates of surface heat fluxes, horizontal advection from near-surface velocities, horizontal eddy advection, and vertical entrainment. Additionally, diapycnal heat fluxes at the mixed-layer base are determined from shipboard and glider microstructure data. The results are discussed in reference to the variability of the eastern boundary circulation, surface heat fluxes and wind forcing.</p>


2020 ◽  
Author(s):  
Amit Tandon ◽  
Emily Shroyer ◽  
Ramasamy Venkatesan ◽  
Andrew Lucas ◽  
J. Thomas Farrar ◽  
...  

<p class="p1"><span class="s1">Air-Sea interaction in the Bay of Bengal has a strong coupling with the Monsoon rains over the South Asian region. The wet and dry spells, or active-break cycles of the Asian summer monsoon are governed by different modes of intra-seasonal variability with implied northward and westward propagation. Multiple hypotheses exist as to how air-sea interaction and the ocean mixed layer influence the propagation of Monsoon Intra-seasonal Oscillations (MISO), but the multi-scale nature of atmosphere-ocean coupling is not well understood. Multi-country collaborative initiatives MISOBOB (Oceanic Control of Monsoon Intra-seasonal Oscillations in the Tropical Indian Ocean and the Bay of Bengal-USA), RIO-MISO (Role of the Indian Ocean on Monsoon Intra-Seasonal Oscillations-USA), and OMM (Ocean Mixing and Monsoons-India) have led to a combination of ocean observations, atmospheric observations, and associated modeling to study this phenomenon. </span></p> <p class="p2"> </p> <p class="p1"><span class="s1">We present observations analyzed using the OMNI (Ocean Moored Buoy Network for Northern Indian Ocean) buoy network of India and RAMA 15N mooring along with MISOBOB field program in June 2018, which captured the onset of the 2018 Monsoon from a heavily instrumented ship that simultaneously made measurements in the atmospheric and oceanic boundary layers. The shortwave and net heat fluxes show dramatic changes during the active phase with the in-situ net heat flux reversing sign. The Monsoon onset cooled all of the Central and North Bay of Bengal by 1.5 K, leading to large heat losses in the Bay, as the oceanic surface mixed layer deepened from 20m to about 40m. This talk will also explore the role of sub-surface salinity stratification in modulating cooling of the upper ocean at multiple locations across the Bay, providing a basin-wide view. Observations suggest that the air-sea interaction and ocean stratification in the Bay likely has strong feedback on the organized convection in the atmosphere.</span></p>


2019 ◽  
Vol 49 (7) ◽  
pp. 1827-1844
Author(s):  
Lars Czeschel ◽  
Carsten Eden

AbstractIn a series of large-eddy simulations with different forcing, we study the generation of internal gravity waves at the base of the surface mixed layer. If turbulent eddies act as obstacles and undulate the base of the mixed layer, horizontal velocities associated with inertial oscillations and Ekman dynamics can move the obstacles relative to the stratified interior, exciting internal gravity waves similar to lee waves. We find strong evidence that the “obstacle mechanism” is able to excite large parts of the internal wave spectrum, including near inertial waves. The high-frequency part of the excited wave spectrum is filtered by the increased stratification in the transition layer between the mixed layer and lower stratified interior, but a substantial part of the wave spectrum is able to overcome this barrier, hence contributing to interior mixing. The magnitude of the downward-radiated energy below the transition layer depends on the source of turbulence, but we show that the obstacle mechanism, especially under destabilizing heat fluxes, has the potential to contribute considerably to the internal wave energy in the interior ocean.


2005 ◽  
Vol 35 (12) ◽  
pp. 2408-2424 ◽  
Author(s):  
J. A. MacKinnon ◽  
M. C. Gregg

Abstract Energetic variable near-inertial internal waves were observed on the springtime New England shelf as part of the Coastal Mixing and Optics (CMO) project. Surface warming and freshwater advection tripled the average stratification during a 3-week observational period in April/May 1997. The wave field was dominated by near-inertial internal waves generated by passing storms. Wave evolution was controlled by a balance among wind stress, bottom drag, and turbulent dissipation. As the stratification evolved, the vertical structure of these near-inertial waves switched from mode 1 to mode 2 with associated changes in the magnitude and location of wave shear. The growth of mode-2 waves was attributable to a combination of changing wind stress forcing and a nonlinear coupling between the first and second vertical modes through quadratic bottom stress. To explore both forcing mechanisms, an open-ocean mixed layer model is adapted to the continental shelf. In this model, surface wind stress and bottom stress are distributed over the surface and bottom mixed layers and then projected onto orthogonal vertical modes. The model replicates the correct magnitude and evolving modal distribution of the internal waves and confirms that bottom stress can act to transfer energy between internal wave modes.


2010 ◽  
Vol 23 (5) ◽  
pp. 1189-1208 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Tristan S. L’Ecuyer

Abstract The east Pacific double intertropical convergence zone (ITCZ) in austral fall is investigated with particular focus on the growing processes of its Southern Hemisphere branch. Satellite measurements from the Tropical Rainfall Measuring Mission (TRMM) and Quick Scatterometer (QuikSCAT) are analyzed to derive 8-yr climatology from 2000 to 2007. The earliest sign of the south ITCZ emerges in sea surface temperature (SST) by January, followed by the gradual development of surface convergence and water vapor. The shallow cumulus population starts growing to form the south ITCZ in February, a month earlier than vigorous deep convection is organized into the south ITCZ. The key factors that give rise to the initial SST enhancement or the southeast Pacific warm band are diagnosed by simple experiments. The experiments are designed to calculate SST, making use of an ocean mixed layer “model” forced by surface heat fluxes, all of which are derived from satellite observations. It is found that the shortwave flux absorbed into the ocean mixed layer is the primary driver of the southeast Pacific warm band. The warm band does not develop in boreal fall because the shortwave flux is seasonally so small that it is overwhelmed by other negative fluxes, including the latent heat and longwave fluxes. Clouds offset the net radiative flux by 10–15 W m−2, which is large enough for the warm band to develop in boreal fall if it were not for clouds reflecting shortwave radiation. Interannual variability of the double ITCZ is also discussed in brief.


2011 ◽  
Vol 68 (4) ◽  
pp. 727-738 ◽  
Author(s):  
Robert van Driel ◽  
Harm J. J. Jonker

In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change in surface heat fluxes may differ from case to case, the authors consider the generic situation of oscillatory surface heat fluxes with different frequencies and amplitudes and study the response of the boundary layer in terms of transfer functions. To this end both a mixed layer model (MLM) and a large-eddy simulation (LES) model are used; the latter is used to evaluate the predictive quality of the mixed layer model. The mixed layer model performs generally quite well for slow changes in the surface heat flux and provides analytical understanding of the transfer characteristics of the boundary layer such as amplitude and phase lag. For rapidly changing surface fluxes (i.e., changes within a time frame comparable to the large eddy turnover time), it proves important to account for the time it takes for the information to travel from the surface to higher levels of the boundary layer such as the inversion zone. As a follow-up to a 1997 study by Sorbjan, who showed that the conventional convective velocity scale is inadequate as a scaling quantity during the decay phase, this paper addresses the issue of defining, in (generic) transitional situations, a velocity scale that is solely based on the surface heat flux and its history.


Ocean Science ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1125-1142
Author(s):  
Marie-Noëlle Bouin ◽  
Cindy Lebeaupin Brossier

Abstract. A kilometre-scale coupled ocean–atmosphere numerical simulation is used to study the impact of the 7 November 2014 medicane on the oceanic upper layer. The processes at play are elucidated through analyses of the tendency terms for temperature and salinity in the oceanic mixed layer. While comparable by its maximum wind speed to a Category 1 tropical cyclone, the medicane results in a substantially weaker cooling. As in weak to moderate tropical cyclones, the dominant contribution to the surface cooling is the surface heat fluxes with secondary effects from the turbulent mixing and lateral advection. Upper-layer salinity decreases due to heavy precipitation that overcompensates the salinizing effect of evaporation and turbulent mixing. The upper-layer evolution is marked by several features believed to be typical of Mediterranean cyclones. First, strong, convective rain occurring at the beginning of the event builds a marked salinity barrier layer. As a consequence, the action of surface forcing is favoured and the turbulent mixing dampened with a net increase in the surface cooling as a result. Second, due to colder surface temperature and weaker stratification, a cyclonic eddy is marked by a weaker cooling opposite to what is usually observed in tropical cyclones. Third, the strong dynamics of the Strait of Sicily enhance the role of the lateral advection in the cooling and warming processes of the mixed layer.


Sign in / Sign up

Export Citation Format

Share Document