scholarly journals Retrieving Storm Electric Fields from Aircraft Field Mill Data. Part I: Theory

2006 ◽  
Vol 23 (10) ◽  
pp. 1289-1302 ◽  
Author(s):  
W. J. Koshak

Abstract It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high-voltage stinger and linearly combined mill data values. It allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers) and also helps improve absolute calibration. Additionally, this paper introduces an alternate way of performing the absolute calibration of an aircraft that has some benefits over conventional analyses. It is accomplished by using the time derivatives of mill and pitch data for a pitch down maneuver performed at high (>1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.

2021 ◽  
Vol 11 (4) ◽  
pp. 179-203
Author(s):  
Asaad Shemshadi ◽  
Pourya Khorampour

Facilities and buildings installed nearby high voltage equipment and electric field exposure is always a serious threat to the health of organisms and can have a significant impact on the functioning of sensitive and vital organs such as the heart and brain. Therefore, it is necessary to study the electromagnetic field value in these areas to control the intensity and restrict the induced value regarding to international recommendations. In this paper, the effects of 230KV transmission line electric fields on the environment are examined by proper FEM software.The model under consideration in this project is a four story building adjacent to the 230KV transmission line.At first, the distance between the building and high voltage transmission lines and its relationship to the intensity of the electric field is examined, and then the intensity of the electric field is compared to the standards of the International Commission on Non Ionizing Radiation Protection (ICNIRP). To continue, in places where the electric field exceeds the standard level value, solutions to reduce the intensity of the electric field to the tolerable value have been proposed.The first solution is to use a metal shield around the building as a Faraday cage, which weakens the potential for electric field value by creating an enclosed surface, the reduction rate is 4700%,both complete cage shape and incomplete cage shapes are considered in this study which reduces the exposure value to 62.5% of its initial value. The second approach to reducing the electric field is to use protective conductor paints against electromagnetic fields. In the following study, the effect of using trees as a barrier against electromagnetic radiation will be examined. Finally, the three proposed solutions are compared in terms of environmental constraints, economic justification, and the reduction in electric field value.


2010 ◽  
Vol 6 (1) ◽  
pp. 31 ◽  
Author(s):  
Cristina Peratta ◽  
Andres Peratta ◽  
Dragan Poljak

The paper introduces a three dimensional multidomainboundary element model of a pregnant woman and foetus for the analysis of exposure to high voltage extremely low frequency electric fields. The definition of the differentphysical and geometrical properties of the relevant tissues is established according to medical information available in existing literature. The model takes into account changes in geometry, body mass, body fat, and overall chemical composition in the body which influence the electrical properties, throughout the different gestational periods. The developed model is used to solve the case of exposure to overhead power transmission lines at different stages of pregnancy including weeks 8, 13, 26 and 38. The results obtained are in line with those published in the earlier works considering different approaches. In addition, a sensitivity analysis involving varying scenarios of conductivity, foetus postures and geometry for each stage is defined and solved. Finally, a correlation between the externally applied electric field and the current density inside the foetus is established and the zones of maximum exposure are identified.


2011 ◽  
Vol 130-134 ◽  
pp. 1413-1417
Author(s):  
You Hua Gao ◽  
Guo Wei Liu ◽  
Yan Bin Li ◽  
You Feng Gao

Numerical calculation model with compound insulation of transient electric field is given. The insulation is more prominent due to complication for voltage applied on valve side winding of the converter transformer. So the simplied structure for electric calculation on the valve side winding of the converter transformer is established. The electric field distribution characteristics on the valve side winding of the converter transformer is analyzed and electric fields in different resistivity and permittivity are calculated under AC high voltage, DC high voltage, AC superimposed DC voltage, polarity reversal voltage. The maximum electric field intensity is calculated and analyzed under kinds of high voltage. Some important influence factors for electric field distribution are also discussed in this paper.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Ye Peng ◽  
Tao Liu ◽  
Haifeng Gong ◽  
Xianming Zhang

The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.


2007 ◽  
Vol 556-557 ◽  
pp. 1007-1010 ◽  
Author(s):  
Christophe Raynaud ◽  
Daniel Loup ◽  
Phillippe Godignon ◽  
Raul Perez Rodriguez ◽  
Dominique Tournier ◽  
...  

High voltage SiC semiconductor devices have been successfully fabricated and some of them are commercially available [1]. To achieve experimental breakdown voltage values as close as possible to the theoretical value, i.e. value of the theoretical semi-infinite diode, it is necessary to protect the periphery of the devices against premature breakdown due to locally high electric fields. Mesa structures and junction termination extension (JTE) as well as guard rings, and combinations of these techniques, have been successfully employed. Each of them has particular drawbacks. Especially, JTE are difficult to optimize in terms of impurity dose to implant, as well as in terms of geometric dimensions. This paper is a study of the spreading of the electric field at the edge of bipolar diodes protected by JTE and field rings, by optical beam induced current.


2013 ◽  
Vol 303-306 ◽  
pp. 482-488
Author(s):  
Kai Mao ◽  
Jin Gang Wang ◽  
Xu Dong Deng ◽  
Wei He ◽  
Zuo Peng Zhang

Based on the basic theory of electromagnetic field, the Electric Field Distortion (EFD) in power frequency electric field caused by induced current of human body has been analyzed. The enhancement factor of the electric field distortion is introduced to reduce the influences caused by human body in the measurement of high voltage electric fields. The Ansoft Maxwell is used to simulate and calculate the electric field distribution under the influence of the human body to have the value of enhancement factor. In addition, the enhancement factor has been corrected by experiment with the electromagnetic field analyzer EFA300. With the enhancement factor introduced in this paper, the measurement error can be reduced.


2015 ◽  
Vol 16 (2) ◽  
pp. 207
Author(s):  
Hussein Ahmad ◽  
Mohd Hafizi Ahmad ◽  
Noor 'Aliaa Awang ◽  
Izzah Hazirah Zakaria

<p>Electromagnetic radiations present in the environment has a profound effect on the growth of vegetable plant primarily grown under the high power transmission lines. The high electric field generated due to ultra high voltage causes the increase and reduction in the size of the plants. Numerous research have been carried out to investigate the effect of electric field on the plants. However, the knowledge in term of quantitative analysis on the effect of electric field on the growth of vegetables is not entirely understood. Thus, this paper presents a study conducted to investigate the effect of high voltage DC electric fields on the young vegetables growth namely ‘Choy Sam’ and bean sprout. The experimental setup was designed which composed of two parallel plate electrodes. This research was focused on the percentage of germination and growing rate of young vegetables. The growth of the young vegetables during exposure was calculated by using statistical methods. The analysis of the results showed that the electric fields and the electric fields treated water have influenced the germination rate and height of stems of both young vegetables causing the increase in stem height.</p><p> </p>


2019 ◽  
pp. 4-14
Author(s):  
V. A. Syasko ◽  
S. S. Golubev ◽  
A. S. Musikhin

The high voltage spark testing method of protective dielectric coatings is applied in almost all manufacture areas and is governed by ISO, ASTM etc. However, all of it doesn’t pay proper attention to high voltage forming (DC or AC) and its polarity relative to electrode, influence of environment and electric field inhomogeneity. In that paper a detailed analysis of air gap breakdown forming processes was given. A dependence of electric field strength on an interelectrode gap length was given for homogeneous and highly inhomogeneous electric fields. It was shown a breakdown voltage of air gaps in highly inhomogeneous field is greatly less than in homogeneous field. Also, it is described the breakdown voltage of air gaps with positive polarity is less then with negative polarity. The possibility coatings testing with a minimum thickness up to 50 m while reducing the testing voltage without reducing the reliability of the results is shown.


Insects ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 447 ◽  
Author(s):  
Shin-ichi Kusakari ◽  
Kiyotsugu Okada ◽  
Manabu Shibao ◽  
Hideyoshi Toyoda

An electric field is the space surrounding an electric charge, within which it is capable of exerting a perceptible force on another electric charge. Especially under high voltage, electric fields induce various electrostatic phenomena, some of which could be utilized to provide remarkable pest control measures. The main focus of the present study was to introduce an attractive force generated by a surface charge on an insulated electrified conductor, which was successfully used to construct an electric field screen that prevented airborne nuisances (spores, flying insects, pollen, and fine smoke) from entering the interiors of various facilities. Another focus was the disinclination of insects to enter the electric field, thus, giving the electric field screen the ability to repel insects. Charges accumulated on the surfaces of non-insulated conductors are mobile through discharge, based on their potential difference. Such arc discharge was strong enough to destroy insects that were exposed to it. Some precedent illustrative examples are cited to explain the principles of attraction, dielectrophoretic movement of spores, and discharge-mediated positive electrification of insects, and to discuss how electric fields are generated and used in electric field-based pest control strategies.


Author(s):  
Ivan Solovey

A study on the effect of high-frequency electric field on cereal seeds to increase seed germination and plant growth is presented. The study was conducted in the treatment of winter wheat seeds. High-voltage electric fields are one of the promising means of influencing crop seeds. One of the areas of use of high frequency high voltage electric fields is pre-sowing seed treatment, storage and processing. Experimental studies were conducted in the laboratory on a specially designed installation using a high-frequency high-voltage source. Processing doses have been established which make it practical to use a high-frequency, high-voltage electric field in electrotechnical winter wheat seed systems. Positive influence of high-frequency electric field on increase of sowing qualities and yielding properties of seeds is established. The optimal mode for determining the winter wheat field is the micro field, the mode is 16.8 kJ per 1 kg energy, the hour is 4 seconds, and the laboratory laboratory is 20% similar.


Sign in / Sign up

Export Citation Format

Share Document