System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies

2007 ◽  
Vol 135 (10) ◽  
pp. 3541-3564 ◽  
Author(s):  
S. Zhang ◽  
M. J. Harrison ◽  
A. Rosati ◽  
A. Wittenberg

Abstract A fully coupled data assimilation (CDA) system, consisting of an ensemble filter applied to the Geophysical Fluid Dynamics Laboratory’s global fully coupled climate model (CM2), has been developed to facilitate the detection and prediction of seasonal-to-multidecadal climate variability and climate trends. The assimilation provides a self-consistent, temporally continuous estimate of the coupled model state and its uncertainty, in the form of discrete ensemble members, which can be used directly to initialize probabilistic climate forecasts. Here, the CDA is evaluated using a series of perfect model experiments, in which a particular twentieth-century simulation—with temporally varying greenhouse gas and natural aerosol radiative forcings—serves as a “truth” from which observations are drawn, according to the actual ocean observing network for the twentieth century. These observations are then assimilated into a coupled model ensemble that is subjected only to preindustrial forcings. By examining how well this analysis ensemble reproduces the “truth,” the skill of the analysis system in recovering anthropogenically forced trends and natural climate variability is assessed, given the historical observing network. The assimilation successfully reconstructs the twentieth-century ocean heat content variability and trends in most locations. The experiments highlight the importance of maintaining key physical relationships among model fields, which are associated with water masses in the ocean and geostrophy in the atmosphere. For example, when only oceanic temperatures are assimilated, the ocean analysis is greatly improved by incorporating the temperature–salinity covariance provided by the analysis ensemble. Interestingly, wind observations are more helpful than atmospheric temperature observations for constructing the structure of the tropical atmosphere; the opposite holds for the extratropical atmosphere. The experiments indicate that the Atlantic meridional overturning circulation is difficult to constrain using the twentieth-century observational network, but there is hope that additional observations—including those from the newly deployed Argo profiles—may lessen this problem in the twenty-first century. The challenges for data assimilation of model systematic biases and evolving observing systems are discussed.

2017 ◽  
Vol 24 (4) ◽  
pp. 681-694 ◽  
Author(s):  
Yuxin Zhao ◽  
Xiong Deng ◽  
Shaoqing Zhang ◽  
Zhengyu Liu ◽  
Chang Liu ◽  
...  

Abstract. Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA) pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW) is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.


2019 ◽  
Vol 12 (7) ◽  
pp. 2727-2765 ◽  
Author(s):  
Hiroaki Tatebe ◽  
Tomoo Ogura ◽  
Tomoko Nitta ◽  
Yoshiki Komuro ◽  
Koji Ogochi ◽  
...  

Abstract. The sixth version of the Model for Interdisciplinary Research on Climate (MIROC), called MIROC6, was cooperatively developed by a Japanese modeling community. In the present paper, simulated mean climate, internal climate variability, and climate sensitivity in MIROC6 are evaluated and briefly summarized in comparison with the previous version of our climate model (MIROC5) and observations. The results show that the overall reproducibility of mean climate and internal climate variability in MIROC6 is better than that in MIROC5. The tropical climate systems (e.g., summertime precipitation in the western Pacific and the eastward-propagating Madden–Julian oscillation) and the midlatitude atmospheric circulation (e.g., the westerlies, the polar night jet, and troposphere–stratosphere interactions) are significantly improved in MIROC6. These improvements can be attributed to the newly implemented parameterization for shallow convective processes and to the inclusion of the stratosphere. While there are significant differences in climates and variabilities between the two models, the effective climate sensitivity of 2.6 K remains the same because the differences in radiative forcing and climate feedback tend to offset each other. With an aim towards contributing to the sixth phase of the Coupled Model Intercomparison Project, designated simulations tackling a wide range of climate science issues, as well as seasonal to decadal climate predictions and future climate projections, are currently ongoing using MIROC6.


2006 ◽  
Vol 19 (14) ◽  
pp. 3361-3377 ◽  
Author(s):  
Youmin Tang ◽  
Richard Kleeman ◽  
Sonya Miller

Abstract Using a recently developed method of computing climatically relevant singular vectors (SVs), the error growth properties of ENSO in a fully coupled global climate model are investigated. In particular, the authors examine in detail how singular vectors are influenced by the phase of ENSO cycle—the physical variable under consideration as well as the error norm deployed. Previous work using SVs for studying ENSO predictability has been limited to intermediate or hybrid coupled models. The results show that the singular vectors share many of the properties already seen in simpler models. Thus, for example, the singular vector spectrum is dominated by one fastest growing member, regardless of the phase of ENSO cycle and the variable of perturbation or the error norm; in addition the growth rates of the singular vectors are very sensitive to the phase of the ENSO cycle, the variable of perturbation, and the error norm. This particular CGCM also displays some differences from simpler models; thus subsurface temperature optimal patterns are strongly sensitive to the phase of ENSO cycle, and at times an east–west dipole in the eastern tropical Pacific basin is seen. This optimal pattern also appears for SST when the error norm is defined using Niño-4. Simpler models consistently display a single-sign equatorial signature in the subsurface corresponding perhaps to the Wyrtki buildup of heat content before a warm event. Some deficiencies in the CGCM and their possible influences on SV growth are also discussed.


2013 ◽  
Vol 141 (8) ◽  
pp. 2910-2945 ◽  
Author(s):  
William J. Merryfield ◽  
Woo-Sung Lee ◽  
George J. Boer ◽  
Viatcheslav V. Kharin ◽  
John F. Scinocca ◽  
...  

Abstract The Canadian Seasonal to Interannual Prediction System (CanSIPS) became operational at Environment Canada's Canadian Meteorological Centre (CMC) in December 2011, replacing CMC's previous two-tier system. CanSIPS is a two-model forecasting system that combines ensemble forecasts from the Canadian Centre for Climate Modeling and Analysis (CCCma) Coupled Climate Model, versions 3 and 4 (CanCM3 and CanCM4, respectively). Mean climate as well as climate trends and variability in these models are evaluated in freely running historical simulations. Initial conditions for CanSIPS forecasts are obtained from an ensemble of coupled assimilation runs. These runs assimilate gridded atmospheric analyses by means of a procedure that resembles the incremental analysis update technique, but introduces only a fraction of the analysis increment in order that differences between ensemble members reflect the magnitude of observational uncertainties. The land surface is initialized through its response to the assimilative meteorology, whereas sea ice concentration and sea surface temperature are relaxed toward gridded observational values. The subsurface ocean is initialized through surface forcing provided by the assimilation run, together with an offline variational assimilation of gridded observational temperatures followed by an adjustment of the salinity field to preserve static stability. The performance of CanSIPS historical forecasts initialized every month over the period 1981–2010 is documented in a companion paper. The CanCM4 model and the initialization procedures developed for CanSIPS have been employed as well for decadal forecasts, including those contributing to phase 5 of the Coupled Model Intercomparison Project.


2005 ◽  
Vol 18 (5) ◽  
pp. 666-683 ◽  
Author(s):  
William J. Merryfield ◽  
George J. Boer

Abstract Variability of subtropical cell (STC) overturning in the upper Pacific Ocean is examined in a coupled climate model in light of large observed changes in STC transport. In a 1000-yr control run, modeled STC variations are smaller than observed, but correlate in a similar way with low-frequency ENSO-like variability. In model runs that include anthropogenically forced climate change, STC pycnocline transports decrease progressively under the influence of global warming, attaining reductions of 8% by 2000 and 46% by 2100. Although the former reduction is insufficient to fully account for the apparent observed decline in STC transport over recent decades, it does suggest that global warming may have contributed to the observed changes. Analysis of coupled model results shows that STC transports play a significant role in modulating tropical Pacific Ocean heat content, and that such changes are dominated by anomalous currents advecting mean temperature, rather than by advection of temperature anomalies by mean currents.


2013 ◽  
Vol 26 (18) ◽  
pp. 7151-7166 ◽  
Author(s):  
Riccardo Farneti ◽  
Geoffrey K. Vallis

Abstract The variability and compensation of the meridional energy transport in the atmosphere and ocean are examined with the state-of-the-art GFDL Climate Model, version 2.1 (CM2.1), and the GFDL Intermediate Complexity Coupled Model (ICCM). On decadal time scales, a high degree of compensation between the energy transport in the atmosphere (AHT) and ocean (OHT) is found in the North Atlantic. The variability of the total or planetary heat transport (PHT) is much smaller than the variability in either AHT or OHT alone, a feature referred to as “Bjerknes compensation.” Natural decadal variability stems from the Atlantic meridional overturning circulation (AMOC), which leads OHT variability. The PHT is positively correlated with the OHT, implying that the atmosphere is compensating, but imperfectly, for variations in ocean transport. Because of the fundamental role of the AMOC in generating the decadal OHT anomalies, Bjerknes compensation is expected to be active only in coupled models with a low-frequency AMOC spectral peak. The AHT and the transport in the oceanic gyres are positively correlated because the gyre transport responds to the atmospheric winds, thereby militating against long-term variability involving the wind-driven flow. Moisture and sensible heat transports in the atmosphere are also positively correlated at decadal time scales. The authors further explore the mechanisms and degree of compensation with a simple, diffusive, two-layer energy balance model. Taken together, these results suggest that compensation can be interpreted as arising from the highly efficient nature of the meridional energy transport in the atmosphere responding to ocean variability rather than any a priori need for the top-of-atmosphere radiation budget to be fixed.


2020 ◽  
Author(s):  
Karin Kvale ◽  
David P. Keller ◽  
Wolfgang Koeve ◽  
Katrin J. Meissner ◽  
Chris Somes ◽  
...  

Abstract. We describe and test a new model of biological marine silicate cycling, implemented in the University of Victoria Earth System Climate Model (UVic ESCM) version 2.9. This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. The new model performs well against important ocean biogeochemical indicators and captures the large-scale features of the marine silica cycle. Furthermore it is computationally efficient, allowing both fully-coupled, long-timescale transient simulations, as well as "offline" transport matrix spinups. We assess the fully-coupled model against modern ocean observations, the historical record since 1960, and a business-as-usual atmospheric CO2 forcing to the year 2300. The model simulates a global decline in net primary production (NPP) of 1.3 % having occurred since the 1960s, with the strongest declines in the tropics, northern mid-latitudes, and Southern Ocean. The simulated global decline in NPP reverses after the year 2100 (forced by the extended RCP CO2 concentration scenario), and NPP returns to pre-industrial rates by 2300. This recovery is dominated by increasing primary production in the Southern Ocean, mostly by calcifying phytoplankton. Large increases in calcifying phytoplankton in the Southern Ocean offset a decline in the low latitudes, producing a global net calcite export in 2300 that varies only slightly from pre-industrial rates. Diatoms migrate southward in our simulations, following the receding Antarctic ice front, but are out-competed by calcifiers across most of their pre-industrial Southern Ocean habitat. Global opal export production thus drops to 50 % of its pre-industrial value by 2300. Model nutrients phosphate, silicate, and nitrate build up along the Southern Ocean particle export pathway, but dissolved iron (for which ocean sources are held constant) increases in the upper ocean. This different behaviour of iron is attributed to a reduction of low-latitude NPP (and consequently, a reduction in both uptake and export and particle, including calcite, scavenging), an increase in seawater temperatures (raising the solubility of particle forms), and stratification that "traps" the iron near the surface. These results are meant to serve as a baseline for sensitivity assessments to be undertaken with this model in the future.


2021 ◽  
Author(s):  
Yajuan Song ◽  
Xunqiang Yin

<p>Accurate prediction over the North Pacific, especially for the key parameter of sea<br>surface temperature (SST), remains a challenge for short-term climate prediction. In<br>this study, seasonal predicted skills of the First Institute of Oceanography Earth System<br>Model version 1.0 (FIO-ESM v1.0) over the North Pacific were assessed. Ensemble<br>adjustment Kalman filter (EAKF) and Projection Optimal Interpolation (Projection-OI) data<br>assimilation schemes were used to provide initial conditions for FIO-ESM v1.0 hindcasts<br>that were started from the first day of each month between 1993 and 2017. Evolution<br>and spacial distribution of SST anomalies over the North Pacific were reasonably<br>reproduced in EAKF and Projection-OI assimilation output. Two hindcast experiments<br>show that the skill of FIO-ESM v1.0 with the EAKF data assimilation scheme to predict<br>SST over the North Pacific is considerably higher than that with Projection-OI data<br>assimilation for all lead times of 1–6 months, especially in the central North Pacific where<br>the subsurface ocean temperature in the initial conditions is significantly improved by<br>EAKF data assimilation. For the Kuroshio–Oyashio extension (KOE) region, the errors<br>in the initial conditions have more rapid propagation resulting in large discrepancies<br>between simulated and observed values, which are reduced by inducing surface<br>waves into the climate model. Incorporation of realistic initial conditions and reasonable<br>physical processes into the coupled model is essential to improving seasonal prediction<br>skill. These results provide a solid basis for the development of operational seasonal<br>prediction systems for the North Pacific.</p>


2017 ◽  
Vol 30 (11) ◽  
pp. 3979-3998 ◽  
Author(s):  
Xu Liu ◽  
Wan Wu ◽  
Bruce A. Wielicki ◽  
Qiguang Yang ◽  
Susan H. Kizer ◽  
...  

Abstract Detecting climate trends of atmospheric temperature, moisture, cloud, and surface temperature requires accurately calibrated satellite instruments such as the Climate Absolute Radiance and Refractivity Observatory (CLARREO). Previous studies have evaluated the CLARREO measurement requirements for achieving climate change accuracy goals in orbit. The present study further quantifies the spectrally dependent IR instrument calibration requirement for detecting trends of atmospheric temperature and moisture profiles. The temperature, water vapor, and surface skin temperature variability and the associated correlation time are derived using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data. The results are further validated using climate model simulation results. With the derived natural variability as the reference, the calibration requirement is established by carrying out a simulation study for CLARREO observations of various atmospheric states under all-sky conditions. A 0.04-K (k = 2; 95% confidence) radiometric calibration requirement baseline is derived using a spectral fingerprinting method. It is also demonstrated that the requirement is spectrally dependent and that some spectral regions can be relaxed as a result of the hyperspectral nature of the CLARREO instrument. Relaxing the requirement to 0.06 K (k = 2) is discussed further based on the uncertainties associated with the temperature and water vapor natural variability and relatively small delay in the time to detect for trends relative to the baseline case. The methodology used in this study can be extended to other parameters (such as clouds and CO2) and other instrument configurations.


2020 ◽  
Vol 13 (9) ◽  
pp. 4305-4321
Author(s):  
Lars Nerger ◽  
Qi Tang ◽  
Longjiang Mu

Abstract. Data assimilation integrates information from observational measurements with numerical models. When used with coupled models of Earth system compartments, e.g., the atmosphere and the ocean, consistent joint states can be estimated. A common approach for data assimilation is ensemble-based methods which utilize an ensemble of state realizations to estimate the state and its uncertainty. These methods are far more costly to compute than a single coupled model because of the required integration of the ensemble. However, with uncoupled models, the ensemble methods also have been shown to exhibit a particularly good scaling behavior. This study discusses an approach to augment a coupled model with data assimilation functionality provided by the Parallel Data Assimilation Framework (PDAF). Using only minimal changes in the codes of the different compartment models, a particularly efficient data assimilation system is generated that utilizes parallelization and in-memory data transfers between the models and the data assimilation functions and hence avoids most of the file reading and writing, as well as model restarts during the data assimilation process. This study explains the required modifications to the programs with the example of the coupled atmosphere–sea-ice–ocean model AWI-CM (AWI Climate Model). Using the case of the assimilation of oceanic observations shows that the data assimilation leads only to small overheads in computing time of about 15 % compared to the model without data assimilation and a very good parallel scalability. The model-agnostic structure of the assimilation software ensures a separation of concerns in which the development of data assimilation methods can be separated from the model application.


Sign in / Sign up

Export Citation Format

Share Document