Exploring Impacts of Rapid-Scan Radar Data on NWS Warning Decisions

2012 ◽  
Vol 27 (4) ◽  
pp. 1031-1044 ◽  
Author(s):  
Pamela L. Heinselman ◽  
Daphne S. LaDue ◽  
Heather Lazrus

Abstract Rapid-scan weather radars, such as the S-band phased array radar at the National Weather Radar Testbed in Norman, Oklahoma, improve precision in the depiction of severe storm processes. To explore potential impacts of such data on forecaster warning decision making, 12 National Weather Service forecasters participated in a preliminary study with two control conditions: 1) when radar scan time was similar to volume coverage pattern 12 (4.5 min) and 2) when radar scan time was faster (43 s). Under these control conditions, forecasters were paired and worked a tropical tornadic supercell case. Their decision processes were observed and audio was recorded, interactions with data displays were video recorded, and the products were archived. A debriefing was conducted with each of the six teams independently and jointly, to ascertain the forecaster decision-making process. Analysis of these data revealed that teams examining the same data sometimes came to different conclusions about whether and when to warn. Six factors contributing toward these differences were identified: 1) experience, 2) conceptual models, 3) confidence, 4) tolerance of possibly missing a tornado occurrence, 5) perceived threats, and 6) software issues. The three 43-s teams issued six warnings: three verified, two did not verify, and one event was missed. Warning lead times were the following: tornado, 18.6 and 11.5 min, and severe, 6 min. The three tornado warnings issued by the three 4.5-min teams verified, though warning lead times were shorter: 4.6 and 0 min (two teams). In this case, use of rapid-scan data showed the potential to extend warning lead time and improve forecasters’ confidence, compared to standard operations.

Author(s):  
John R. Mecikalski ◽  
Thea N. Sandmæl ◽  
Elisa M. Murillo ◽  
Cameron R. Homeyer ◽  
Kristopher M. Bedka ◽  
...  

AbstractFew studies have assessed combined satellite, lightning, and radar databases to diagnose severe storm potential. The research goal here is to evaluate next-generation, 60-second update frequency geostationary satellite and lightning information with ground-based radar to isolate which variables, when used in concert, provide skillful discriminatory information for identifying severe (hail ≥2.5 cm in diameter, winds ≥25 m s–1, tornadoes) versus non-severe storms. The focus of this study is predicting severe thunderstorm and tornado warnings. A total of 2,004 storms in 2014–2015 were objectively tracked with 49 potential predictor fields related to May, daytime Great Plains convective storms. All storms occurred when 1-min Geostationary Operational Environmental Satellite (GOES)–14 “super rapid scan” data were available. The study used three importance methods to assess predictor importance related to severe warnings, and random forests to provide a model and skill evaluation measuring the ability to predict severe storms. Three predictor importance methods show that GOES mesoscale atmospheric motion vector derived cloud-top divergence and above anvil cirrus plume presence provide the most satellite-based discriminatory power for diagnosing severe warnings. Other important fields include Earth Networks Total Lightning flash density, GOES estimated cloud-top vorticity, and overshooting-top presence. Severe warning predictions are significantly improved at the 95% confidence level when a few important satellite and lightning fields are combined with radar fields, versus when only radar data are used in the random forests model. This study provides a basis for including satellite and lightning fields within machine-learning models to help forecast severe weather.


2015 ◽  
Vol 30 (4) ◽  
pp. 933-956 ◽  
Author(s):  
Charles M. Kuster ◽  
Pamela L. Heinselman ◽  
Marcus Austin

Abstract On 31 May 2013, a supercell produced a tornado rated as 3 on the enhanced Fujita scale (EF3) near El Reno, Oklahoma, which was sampled by the S-band phased-array radar (PAR) at the National Weather Radar Testbed in Norman, Oklahoma. Collaboration with the forecaster who issued tornado warnings for the El Reno supercell during real-time operations focused the analysis on critical radar signatures frequently assessed during warning operations. The wealth of real-world experience provided by the forecaster, along with the quantitative analysis, highlighted differences between rapid-scan PAR data and the Weather Surveillance Radar-1988 Doppler located near Oklahoma City, Oklahoma (KTLX), within the context of forecast challenges faced on 31 May 2013. The comparison revealed that the 70-s PAR data proved most advantageous to the forecaster’s situational awareness in instances of rapid storm organization, sudden mesocyclone intensification, and abrupt, short-term changes in tornado motion. Situations where PAR data were most advantageous in the depiction of storm-scale processes included 1) rapid variations in mesocyclone intensity and associated changes in inflow magnitude; 2) imminent radar-indicated development of the short-lived (EF0) Calumet, Oklahoma, and long-lived (EF3) El Reno tornadoes; and 3) precise location and motion of the tornado circulation. As a result, it is surmised that rapid-scan volumetric radar data in cases like this would augment a forecaster’s ability to observe rapidly evolving storm features and deliver timely, life-saving information to the general public.


1995 ◽  
Vol 32 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Y. Azzout ◽  
S. Barraud ◽  
F. N. Cres ◽  
E. Alfakih

The choice of alternative techniques in urban stormwater drainage (infiltration and detention systems), in the course of a project, is most often made with a poor understanding of site constraints, and the possibilities afforded by these techniques. This gives rise to extra costs and also subsequent malfunctioning. To arrive at feasible choices, we have formalised the decision-making process, taking account of the multiple criteria and the large number of partners involved. At present, we are developing a decision-making tool for alternative techniques in urban stormwater management at the preliminary study stage. The first phase makes it possible to eliminate solutions which are unworkable (elimination phase). It is aimed at the designer. Work on the next phase (the decision-making phase), which is more complex, is in progress. It will make it possible, in collaboration with all the partners involved, to choose a stormwater drainage strategy which will best suit the objectives and the wishes of the partners. It uses multi-criteria methods.


2018 ◽  
Vol 146 (8) ◽  
pp. 2483-2502 ◽  
Author(s):  
Howard B. Bluestein ◽  
Kyle J. Thiem ◽  
Jeffrey C. Snyder ◽  
Jana B. Houser

Abstract This study documents the formation and evolution of secondary vortices associated within a large, violent tornado in Oklahoma based on data from a close-range, mobile, polarimetric, rapid-scan, X-band Doppler radar. Secondary vortices were tracked relative to the parent circulation using data collected every 2 s. It was found that most long-lived vortices (those that could be tracked for ≥15 s) formed within the radius of maximum wind (RMW), mainly in the left-rear quadrant (with respect to parent tornado motion), passing around the center of the parent tornado and dissipating closer to the center in the right-forward and left-forward quadrants. Some secondary vortices persisted for at least 1 min. When a Burgers–Rott vortex is fit to the Doppler radar data, and the vortex is assumed to be axisymmetric, the secondary vortices propagated slowly against the mean azimuthal flow; if the vortex is not assumed to be axisymmetric as a result of a strong rear-flank gust front on one side of it, then the secondary vortices moved along approximately with the wind.


2011 ◽  
Vol 3 (2) ◽  
pp. 128-140 ◽  
Author(s):  
S. Hoekstra ◽  
K. Klockow ◽  
R. Riley ◽  
J. Brotzge ◽  
H. Brooks ◽  
...  

Abstract Tornado warnings are currently issued an average of 13 min in advance of a tornado and are based on a warn-on-detection paradigm. However, computer model improvements may allow for a new warning paradigm, warn-on-forecast, to be established in the future. This would mean that tornado warnings could be issued one to two hours in advance, prior to storm initiation. In anticipation of the technological innovation, this study inquires whether the warn-on-forecast paradigm for tornado warnings may be preferred by the public (i.e., individuals and households). The authors sample is drawn from visitors to the National Weather Center in Norman, Oklahoma. During the summer and fall of 2009, surveys were distributed to 320 participants to assess their understanding and perception of weather risks and preferred tornado warning lead time. Responses were analyzed according to several different parameters including age, region of residency, educational level, number of children, and prior tornado experience. A majority of the respondents answered many of the weather risk questions correctly. They seemed to be familiar with tornado seasons; however, they were unaware of the relative number of fatalities caused by tornadoes and several additional weather phenomena each year in the United States. The preferred lead time was 34.3 min according to average survey responses. This suggests that while the general public may currently prefer a longer average lead time than the present system offers, the preference does not extend to the 1–2-h time frame theoretically offered by the warn-on-forecast system. When asked what they would do if given a 1-h lead time, respondents reported that taking shelter was a lesser priority than when given a 15-min lead time, and fleeing the area became a slightly more popular alternative. A majority of respondents also reported the situation would feel less life threatening if given a 1-h lead time. These results suggest that how the public responds to longer lead times may be complex and situationally dependent, and further study must be conducted to ascertain the users for whom the longer lead times would carry the most value. These results form the basis of an informative stated-preference approach to predicting public response to long (>1 h) warning lead times, using public understanding of the risks posed by severe weather events to contextualize lead-time demand.


2013 ◽  
Vol 30 (11) ◽  
pp. 2571-2584 ◽  
Author(s):  
Cuong M. Nguyen ◽  
V. Chandrasekar

Abstract The Gaussian model adaptive processing in the time domain (GMAP-TD) method for ground clutter suppression and signal spectral moment estimation for weather radars is presented. The technique transforms the clutter component of a weather radar return signal to noise. Additionally, an interpolation procedure has been developed to recover the portion of weather echoes that overlap clutter. It is shown that GMAP-TD improves the performance over the GMAP algorithm that operates in the frequency domain using both signal simulations and experimental observations. Furthermore, GMAP-TD can be directly extended for use with a staggered pulse repetition time (PRT) waveform. A detailed evaluation of GMAP-TD performance and comparison against the GMAP are done using simulated radar data and observations from the Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) radar using uniform and staggered PRT waveform schemes.


2008 ◽  
Vol 23 (2) ◽  
pp. 246-258 ◽  
Author(s):  
Kevin M. Simmons ◽  
Daniel Sutter

Abstract Conventional wisdom holds that improved tornado warnings will reduce tornado casualties, because longer lead times on warnings provide extra opportunities to alert residents who can then take precautions. The relationship between warnings and casualties is examined using a dataset of tornadoes in the contiguous United States between 1986 and 2002. Two questions are examined: Does a warning issued on a tornado reduce the resulting number of fatalities and injuries? Do longer lead times reduce casualties? It is found that warnings have had a significant and consistent effect on tornado injuries, with a reduction of over 40% at some lead time intervals. The results for fatalities are mixed. An increase in lead time up to about 15 min reduces fatalities, while lead times longer than 15 min increase fatalities compared with no warning. The fatality results beyond 15 min, however, depend on five killer tornadoes and consequently are not robust.


2007 ◽  
Vol 111 (7) ◽  
pp. 1517-1522 ◽  
Author(s):  
Baokang Jin ◽  
Peng Liu ◽  
Ye Wang ◽  
Zipin Zhang ◽  
Yupeng Tian ◽  
...  

Author(s):  
Lucero Rodriguez Rodriguez ◽  
Carlos Bustamante Orellana ◽  
Jayci Landfair ◽  
Corey Magaldino ◽  
Mustafa Demir ◽  
...  

As technological advancements and lowered costs make self-driving cars available to more people, it becomes important to understand the dynamics of human-automation interactions for safety and efficacy. We used a dynamical approach to examine data from a previous study on simulated driving with an automated driving assistant. To maximize effect size in this preliminary study, we focused the current analysis on the two lowest and two highest-performing participants. Our visual comparisons were the utilization of the automated system and the impact of perturbations. Low-performing participants toggled and maintained reliance either on automation or themselves for longer periods of time. Decision making of high-performing participants was using the automation briefly and consistently throughout the driving task. Participants who displayed an early understanding of automation capabilities opted for tactical use. Further exploration of individual differences and automation usage styles will help to understand the optimal human-automation-team dynamic and increase safety and efficacy.


Author(s):  
VINCENT T. WOOD ◽  
ROBERT P. DAVIES-JONES ◽  
ALAN SHAPIRO

AbstractSingle-Doppler radar data are often missing in important regions of a severe storm due to low return power, low signal-to-noise ratio, ground clutter associated with normal and anomalous propagation, and missing radials associated with partial or total beam blockage. Missing data impact the ability of WSR-88D algorithms to detect severe weather. To aid the algorithms, we develop a variational technique that fills in Doppler velocity data voids smoothly by minimizing Doppler velocity gradients while not modifying good data. This method provides estimates of the analysed variable in data voids without creating extrema.Actual single-Doppler radar data of four tornadoes are used to demonstrate the variational algorithm. In two cases, data are missing in the original data, and in the other two, data are voided artificially. The filled-in data match the voided data well in smoothly varying Doppler velocity fields. Near singularities such as tornadic vortex signatures, the match is poor as anticipated. The algorithm does not create any velocity peaks in the former data voids, thus preventing false triggering of tornado warnings. Doppler circulation is used herein as a far-field tornado detection and advance-warning parameter. In almost all cases, the measured circulation is quite insensitive to the data that have been voided and then filled. The tornado threat is still apparent.


Sign in / Sign up

Export Citation Format

Share Document