scholarly journals Use of a Rain Gauge Network to Infer the Influence of Environmental Factors on the Propagation of Quasi-Linear Convective Systems in West Africa

2007 ◽  
Vol 22 (5) ◽  
pp. 1016-1030 ◽  
Author(s):  
Jon M. Schrage ◽  
Andreas H. Fink

Abstract The West African squall line is a key quasi-linear storm system that brings much of the precipitation observed in the data-poor Sudanian climate zone. Squall lines propagate at a wide range of speeds and headings, but the lack of operational radar stations in the region makes quantifying the propagation of the squall lines difficult. A new method of estimating the propagation rate and heading for squall lines is proposed. Based on measurements of the time of onset of precipitation (OOP) at a network of rain gauge stations, an estimate of the propagation characteristics of the squall line can be inferred. By combining estimates of propagation rate with upper-air observations gathered at a nearby radiosonde station, the impact of various environmental factors on the propagation characteristics of West African squall lines is inferred. Results suggest that the propagation speed for West African squall lines is related to the conditions at midtropospheric levels, where dry air and an enhanced easterly flow favor faster propagation. Northerly anomalies at these levels are also associated with faster propagation. When applied to West African squall lines, the correlations between these environmental factors and the speed of propagation are significantly higher than those of methods developed for mesoscale convective systems in other parts of the world.

2020 ◽  
Vol 148 (4) ◽  
pp. 1691-1715
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski

Abstract The West African summer monsoon features multiple, complex interactions between African easterly waves (AEWs), moist convection, variable land surface properties, dust aerosols, and the diurnal cycle. One aspect of these interactions, the coupling between convection and AEWs, is explored using observations obtained during the 2006 African Monsoon Multidisciplinary Analyses (AMMA) field campaign. During AMMA, a research weather radar operated at Niamey, Niger, where it surveilled 28 squall-line systems characterized by leading convective lines and trailing stratiform regions. Nieto Ferreira et al. found that the squall lines were linked with the passage of AEWs and classified them into two tracks, northerly and southerly, based on the position of the African easterly jet (AEJ). Using AMMA sounding data, we create a composite of northerly squall lines that tracked on the cyclonic shear side of the AEJ. Latent heating within the trailing stratiform regions produced a midtropospheric positive potential vorticity (PV) anomaly centered at the melting level, as commonly observed in such systems. However, a unique aspect of these PV anomalies is that they combined with a 400–500-hPa positive PV anomaly extending southward from the Sahara. The latter feature is a consequence of the deep convective boundary layer over the hot Saharan Desert. Results provide evidence of a coupling and merging of two PV sources—one associated with the Saharan heat low and another with latent heating—that ends up creating a prominent midtropospheric positive PV maximum to the rear of West African squall lines.


2010 ◽  
Vol 67 (10) ◽  
pp. 3384-3408 ◽  
Author(s):  
Adam J. French ◽  
Matthew D. Parker

Abstract Some recent numerical experiments have examined the dynamics of initially surface-based squall lines that encounter an increasingly stable boundary layer, akin to what occurs with the onset of nocturnal cooling. The present study builds on that work by investigating the added effect of a developing nocturnal low-level jet (LLJ) on the convective-scale dynamics of a simulated squall line. The characteristics of the simulated LLJ atop a simulated stable boundary layer are based on past climatological studies of the LLJ in the central United States. A variety of jet orientations are tested, and sensitivities to jet height and the presence of low-level cooling are explored. The primary impacts of adding the LLJ are that it alters the wind shear in the layers just above and below the jet and that it alters the magnitude of the storm-relative inflow in the jet layer. The changes to wind shear have an attendant impact on low-level lifting, in keeping with current theories for gust front lifting in squall lines. The changes to the system-relative inflow, in turn, impact total upward mass flux and precipitation output. Both are sensitive to the squall line–relative orientation of the LLJ. The variations in updraft intensity and system-relative inflow are modulated by the progression of the low-level cooling, which mimics the development of a nocturnal boundary layer. While the system remains surface-based, the below-jet shear has the largest impact on lifting, whereas the above-jet shear begins to play a larger role as the system becomes elevated. Similarly, as the system becomes elevated, larger changes to system-relative inflow are observed because of the layer of potentially buoyant inflowing parcels becoming confined to the layer of the LLJ.


2011 ◽  
Vol 139 (10) ◽  
pp. 3163-3183 ◽  
Author(s):  
Casey E. Letkewicz ◽  
Matthew D. Parker

Abstract The complex evolution of convective systems crossing (or attempting to cross) mountainous terrain represents a substantial forecasting challenge. This study examines the processes associated with environments of “crossing” squall lines (which were able to redevelop strong convection in the lee of a mountain barrier) and “noncrossing” squall lines (which were not able to redevelop strong convection downstream of the barrier). In particular, numerical simulations of mature convective systems crossing idealized terrain roughly approximating the Appalachian Mountains were used to test the first-order impact of variations in the vertical wind profile upon system maintenance. By itself, the wind profile showed no ability to uniquely discriminate between simulated crossing and noncrossing squall lines; each test revealed a similar pattern of orographic enhancement, suppression, and lee reinvigoration in which a hydraulic jump deepened the system’s cold pool and renewed the low-level lifting. Increasing the mean wind led to greater enhancement of vertical velocities on the windward side of the barrier and greater suppression on the lee side. Variations in the low-level shear influenced the temperature and depth of the outflow, which in turn altered the lifting along the system’s gust front. However, in all of the wind profile tests, convection redeveloped in the lee. Additional simulations explored more marginal environments in which idealized low-level cooling or drying stabilized the downstream environment. In most such tests, the systems weakened but the presence of CAPE aloft still enabled the systems to survive in the lee. However, the combination of a stronger mean wind with diminished CAPE and increased convective inhibition (CIN) was ultimately found to eliminate downstream redevelopment and produce a noncrossing mesoscale convective system (MCS). Within these experiments, the ability of a squall line to cross a barrier similar to the Appalachians is primarily tied to the characteristics of the downstream thermodynamic environment; however, as the lee thermodynamic environment becomes less favorable, the mean wind exerts a greater influence on system intensity and redevelopment.


2020 ◽  
Author(s):  
Ragi Rajagopalan ◽  
Anurag Dipankar ◽  
Xiang-Yu Huang

<p>Squall lines are the prominent feature over Singapore region creating strongly localized rain events due to vigorous localized convective activity. These convective systems have relatively small spatial and temporal scales compared to other atmospheric features like monsoons, thus the prediction of these features lack accuracy. The SINGV numerical weather prediction model is able to provide improved weather forecasts over Singapore region, however, challenges still exist in predicting the thunderstorm/squall line events in onset, location, intensity and lead time. A few real-time case studies of squall lines indicate that SINGV could not capture these features appropriately, while WRF did a better forecasting. To understand the issues with SINGV model, idealized simulations replicating the Weismann & Klemp ‘82 case are conducted keeping similar physics in both the models. Preliminary results indicate that both models behave differently: WRF displays organized convection whereas in SINGV the storm splits at the early stages. Cross-sectional details along the propagating squall line suggest that the updrafts and downdrafts, at the storm development stages, are moderately higher in SINGV compared to WRF. It is speculated that these stronger updrafts in SINGV carry anomalously large amount of liquid water to the upper troposphere where these are converted into rain, which in turn result in stronger downdrafts facilitating the splitting of initial storm. Further analysis is required to conclude our speculation.</p>


2011 ◽  
Vol 68 (5) ◽  
pp. 1114-1123 ◽  
Author(s):  
Jasmine Cetrone ◽  
Robert A. Houze

Abstract The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.


2017 ◽  
Vol 74 (7) ◽  
pp. 2211-2228 ◽  
Author(s):  
Karsten Peters ◽  
Cathy Hohenegger

Abstract The influence of surface conditions in the form of changing surface temperatures on fully developed mesoscale convective systems (MCSs) is investigated using a cloud-system-resolving setup of the Icosahedral Nonhydrostatic (ICON) model (1-km grid spacing). The simulated MCSs take the form of squall lines with trailing stratiform precipitation. After the squall lines have reached a quasi-steady state, secondary convection is triggered ahead of the squall line, resulting in an increase of squall-line propagation speed, also known as discrete propagation. The higher propagation speed is then maintained for the remainder of the simulations because secondary convection ahead of the squall line acts to reduce the environmental wind shear over the depth of the squall line’s cold pool. The surface conditions have only a marginal effect on the squall lines themselves. This is so because the surface fluxes cannot significantly affect the cold pool, which is continuously replenished by midtropospheric air. The midtroposphere remains similar given the use of identical initial profiles. The only effect of the surface fluxes consists in an earlier acceleration of the squall line due to earlier initiation of secondary convection with higher surface temperature. Finally, a conceptual model to estimate the change in surface temperature needed to achieve a change in onset time of prefrontal secondary convection and the associated discrete propagation events given the environmental conditions is presented.


2020 ◽  
Vol 77 (12) ◽  
pp. 4143-4170
Author(s):  
Kelly Lombardo

AbstractIdealized 3D numerical simulations are used to quantify the impact of moving marine atmospheric boundary layers (MABLs) on squall lines in an environment representative of the U.S. mid-Atlantic coastal plain. Characteristics of the MABL, including depth and potential temperature, are varied. Squall lines are most intense while moving over the deepest MABLs, while the storm encountering no MABL is the weakest. Storm intensity is only sensitive to MABL temperature when the MABL is sufficiently deep. Collisions between the storm cold pools and MABLs transition storm lift from surface-based cold pools to wavelike features, with the resulting ascent mechanism dependent on MABL density, not depth. Bores form when the MABL is denser than the cold pool and hybrid cold pool–bores form when the densities are similar. While these features support storms over the MABL, the type of lifting mechanism does not control storm intensity alone. Storm intensity depends on the amplification and maintenance of these features, which is determined by the ambient conditions. Isolated convective cells form ahead of squall lines prior to the cold pool–MABL collision, resulting in a rain peak and the eventual discrete propagation of the storms. Cells form as storm-generated high-frequency gravity waves interact with gravity waves generated by the moving marine layers, in the presence of reduced stability by the squall line itself. No cells form in the presence of the storm or the MABL alone.


2020 ◽  
Vol 55 (11-12) ◽  
pp. 3543-3564
Author(s):  
Basile Poujol ◽  
Andreas F. Prein ◽  
Andrew J. Newman

Abstract Convective storms produce heavier downpours and become more intense with climate change. Such changes could be even amplified in high-latitudes since the Arctic is warming faster than any other region in the world and subsequently moistening. However, little attention has been paid to the impact of global warming on intense thunderstorms in high latitude continental regions, where they can produce flash flooding or ignite wildfires. We use a model with kilometer-scale grid spacing to simulate Alaska’s climate under present and end of the century high emission scenario conditions. The current climate simulation is able to capture the frequency and intensity of hourly precipitation compared to rain gauge data. We apply a precipitation tracking algorithm to identify intense, organized convective systems, which are projected to triple in frequency and extend to the northernmost regions of Alaska under future climate conditions. Peak rainfall rates in the core of the storms will intensify by 37% in line with atmospheric moisture increases. These results could have severe impacts on Alaska’s economy and ecology since floods are already the costliest natural disaster in central Alaska and an increasing number of thunderstorms could result in more wildfires ignitions.


2008 ◽  
Vol 8 (6) ◽  
pp. 19201-19247 ◽  
Author(s):  
J. J. Halland ◽  
H. E. Fuelberg ◽  
K. E. Pickering ◽  
M. Luo

Abstract. Understanding the mechanisms that transport pollutants from the surface to the free atmosphere is important for determining the atmosphere's chemical composition. This study quantifies the vertical transport of tropospheric carbon monoxide (CO) by deep mesoscale convective systems and assesses the ability of the satellite-borne Tropospheric Emission Spectrometer (TES) to detect the resulting enhanced CO in the upper atmosphere. A squall line that is similar to one occurring during NASA's INTEX-B mission is simulated using a typical environmental wind shear profile and the 2-D Goddard Cumulus Ensemble model. The simulation provides post-convection CO profiles. The structure of the simulated squall line is examined, and its vertical transport of CO is quantified. Then, TES' ability to resolve the convectively modified CO distribution is documented using a "clear-sky" retrieval scheme. Results show that the simulated squall line transports the greatest mass of CO in the upper levels, with a value of 96 t upward and 67 t downward at 300 hPa. Maximum updraft speed is found to be unimportant in determining the net CO flux transported by a storm, but is important in determining the altitude to which the storm transports the boundary layer CO. Results indicate that TES has sufficient sensitivity to resolve convectively lofted CO, as long as the retrieval scene is cloud-free. TES swaths located immediately downwind of squall lines have the greatest chance of sensing convective transport because the impact of clouds on retrieval quality becomes less. A note of caution is to always analyze TES-derived CO data (or data from any satellite sensor) together with the retrieval averaging kernel diagonals or other parameters describing the information content of the retrieval.


2009 ◽  
Vol 9 (13) ◽  
pp. 4279-4294 ◽  
Author(s):  
J. J. Halland ◽  
H. E. Fuelberg ◽  
K. E. Pickering ◽  
M. Luo

Abstract. Understanding the mechanisms that transport pollutants from the surface to the free atmosphere is important for determining the atmosphere's chemical composition. This study quantifies the vertical transport of tropospheric carbon monoxide (CO) by deep mesoscale convective systems and assesses the ability of the satellite-borne Tropospheric Emission Spectrometer (TES) to detect the resulting enhanced CO in the upper atmosphere. A squall line that is similar to one occurring during NASA's INTEX-B mission is simulated using a typical environmental wind shear profile and the 2-D Goddard Cumulus Ensemble model. The simulation provides post-convection CO profiles. The structure of the simulated squall line is examined, and its vertical transport of CO is quantified. Then, TES' ability to resolve the convectively modified CO distribution is documented using a "clear-sky" retrieval scheme. Results show that the simulated squall line transports the greatest mass of CO in the upper levels, with a value of 96 t upward and 67 t downward at 300 hPa. Results indicate that TES has sufficient sensitivity to resolve convectively lofted CO, as long as the retrieval scene is cloud-free. TES swaths located immediately downwind of squall lines have the greatest chance of sensing convective transport because the impact of clouds on retrieval quality becomes less. A note of caution is to always analyze TES-derived CO data (or data from any satellite sensor) together with the retrieval averaging kernels that describe the information content of the retrieval.


Sign in / Sign up

Export Citation Format

Share Document