Squall Line Response to Coastal Mid-Atlantic Thermodynamic Heterogeneities

2020 ◽  
Vol 77 (12) ◽  
pp. 4143-4170
Author(s):  
Kelly Lombardo

AbstractIdealized 3D numerical simulations are used to quantify the impact of moving marine atmospheric boundary layers (MABLs) on squall lines in an environment representative of the U.S. mid-Atlantic coastal plain. Characteristics of the MABL, including depth and potential temperature, are varied. Squall lines are most intense while moving over the deepest MABLs, while the storm encountering no MABL is the weakest. Storm intensity is only sensitive to MABL temperature when the MABL is sufficiently deep. Collisions between the storm cold pools and MABLs transition storm lift from surface-based cold pools to wavelike features, with the resulting ascent mechanism dependent on MABL density, not depth. Bores form when the MABL is denser than the cold pool and hybrid cold pool–bores form when the densities are similar. While these features support storms over the MABL, the type of lifting mechanism does not control storm intensity alone. Storm intensity depends on the amplification and maintenance of these features, which is determined by the ambient conditions. Isolated convective cells form ahead of squall lines prior to the cold pool–MABL collision, resulting in a rain peak and the eventual discrete propagation of the storms. Cells form as storm-generated high-frequency gravity waves interact with gravity waves generated by the moving marine layers, in the presence of reduced stability by the squall line itself. No cells form in the presence of the storm or the MABL alone.

2020 ◽  
Author(s):  
Jaemyeong Mango Seo ◽  
Cathy Hohenegger

<p>Cold pool generated by convective clouds is an evaporatively cooled dry region which spreads out near the surface. Studying the cold pool characteristics enhances our understanding about convective clouds such as shallow-to-deep transition of convective clouds, long-lived squall line, and triggering secondary convection. In this study, cold pools over Germany are detected and characterized using phase 0 results of DYAMOND (stands for DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains) intercomparison project. We aim to understand how the cold pool characteristics over Germany depend on topographic height, accompanying cloud size, and model.</p><p>Nine model results of the DYAMOND collection are remapped into 0.1˚ × 0.1˚ regular grid system. Cold pool cluster is defined as a cluster with an area larger than ~64 km<sup>2</sup> (4 grids), with the perturbation virtual (density) potential temperature below 2 K and the maximum precipitation rate greater than 1 mm h<sup>–1</sup>. Detected cold pools are re-categorized by the topographic height to decompose cold pools related to orographic precipitation and by the accompanying cloud size to decompose cold pools related to large cloud system.</p><p>During simulated period (40 days from 1 August 2016), model averaged total detected cold pool number is 5.59 h<sup>–1</sup>. Although more number of cold pool clusters are detected over low topographic area (1.34 h<sup>–1</sup> and 4.25 h<sup>–1</sup> over high and low area, respectively), area weighted cold pool cluster number is 3.82 times larger over high topographic area (17.55 h<sup>–1</sup> and 4.60 h<sup>–1</sup> over high and low area, respectively). Most of cold pool clusters are accompanied by larger clouds than themselves (78 %) and 9 % of cold pools are detected outside of cloud cover. Except for the cold pools accompanied by clouds of synoptic low pressure system, most of cold pools are detected in the daytime. Cold pool clusters over high topographic area are larger, more non-circular shaped, colder, and with lower wind speed than those over low topographic area. Cold pool clusters accompanied by small clouds are colder, drier, with higher wind speed, and with stronger precipitation than those accompanied by large clouds. In this study, relationship between cold pool characteristic parameters in each category is also investigated. To understand how cold pool feature varies from model to model, the cold pool characteristic parameters in each DYAMOND model result are compared and analyzed.</p>


2016 ◽  
Vol 144 (5) ◽  
pp. 1923-1934 ◽  
Author(s):  
M. Provod ◽  
J. H. Marsham ◽  
D. J. Parker ◽  
C. E. Birch

Cold pools are integral components of squall-line mesoscale convective systems and the West African monsoon, but are poorly represented in operational global models. Observations of 38 cold pools made at Niamey, Niger, during the 2006 African Monsoon Multidisciplinary Analysis (AMMA) campaign (1 June–30 September 2006), are used to generate a seasonal characterization of cold pool properties by quantifying related changes in surface meteorological variables. Cold pools were associated with temperature decreases of 2°–14°C, pressure increases of 0–8 hPa, and wind gusts of 3–22 m s−1. Comparison with published values of similar variables from the U.S. Great Plains showed comparable differences. The leading part of most cold pools had decreased water vapor mixing ratios compared to the environment, with moister air, likely related to precipitation, approximately 30 min behind the gust front. A novel diagnostic used to quantify how consistent observed cold pool temperatures are with saturated or unsaturated descent from midlevels [fractional evaporational energy deficit (FEED)] shows that early season cold pools are consistent with less saturated descents. Early season cold pools were relatively colder, windier, and wetter, consistent with drier midlevels, although this was only statistically significant for the change in moisture. Late season cold pools tended to decrease equivalent potential temperature from the pre–cold pool value, whereas earlier in the season changes were smaller, with more increases. The role of cold pools may therefore change through the season, with early season cold pools more able to feed subsequent convection.


2021 ◽  
Author(s):  
Sophie Abramian ◽  
Caroline Muller ◽  
Camille Risi

<p>Investigating tropical squall lines with a cloud resolving model</p><p>Using a cloud resolving model, we attempt to clarify the physical processes responsible for the organization of deep clouds into squall lines in the tropics. To do so, we impose a vertical wind shear, and investigate the response of deep convection to different shear strengths in radiative convective equilibrium. As the magnitude of the shear increases, the convection becomes more and more organized into a line, perpendicular to the shear. It is due to the interaction of the low-level shear with the cold pools associated with convective downdrafts. Beyond a certain shear, called optimal shear, the line tends to orient at an angle to the shear. The existing literature suggests that this angle conserves the projection of the shear on the direction perpendicular to the squall line near the optimal value, a hypothesis that we further investigate here.</p><p>In this work, we propose a systematic method, based on image auto-correlation, to determine the angle of the squall line with respect to the shear. We highlight the existence of the sub-critical and super-critical regime, as predicted by earlier studies. In the sub-critical regime, squall lines are indeed perpendicular to the shear. Yet, angles of squall lines in the super-critical regime do not clearly correspond to the conservation of the projected component of the shear near the optimal value. In particular, squall lines often remain more perpendicular to the shear than expected.</p><p>We thus investigate the balance between shear and cold pool winds to explain this difference. Using statistical methods on extreme events, we find that this difference is due to an intensification of cold pool potential energy with shear. Cold pool intensification allows the squall line to better resist to the shear, and thus reduces its angle of orientation. This new feature leads us to conclude that two mechanisms maintain a squall line in wind shear : the orientation of clouds and the intensification of cold pools.</p>


2012 ◽  
Vol 140 (1) ◽  
pp. 202-225 ◽  
Author(s):  
George H. Bryan ◽  
Hugh Morrison

Abstract Idealized simulations of the 15 May 2009 squall line from the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are evaluated in this study. Four different microphysical setups are used, with either single-moment (1M) or double-moment (2M) microphysics, and either hail or graupel as the dense (rimed) ice species. Three different horizontal grid spacings are used: Δx = 4, 1, or 0.25 km (with identical vertical grids). Overall, results show that simulated squall lines are sensitive to both microphysical setup and horizontal resolution, although some quantities (i.e., surface rainfall) are more sensitive to Δx in this study. Simulations with larger Δx are slower to develop, produce more precipitation, and have higher cloud tops, all of which are attributable to larger convective cells that do not entrain midlevel air. The highest-resolution simulations have substantially more cloud water evaporation, which is partly attributable to the development of resolved turbulence. For a given Δx, the 1M simulations produce less rain, more intense cold pools, and do not have trailing stratiform precipitation at the surface, owing to excessive rainwater evaporation. The simulations with graupel as the dense ice species have unrealistically wide convective regions. Comparison against analyses from VORTEX2 data shows that the 2M setup with hail and Δx = 0.25 km produces the most realistic simulation because (i) this simulation produces realistic distributions of reflectivity associated with convective, transition, and trailing stratiform regions, (ii) the cold pool properties are reasonably close to analyses from VORTEX2, and (iii) relative humidity in the cold pool is closest to observations.


2020 ◽  
Vol 148 (12) ◽  
pp. 4971-4994
Author(s):  
McKenna W. Stanford ◽  
Hugh Morrison ◽  
Adam Varble

AbstractThis study investigates impacts of altering subgrid-scale mixing in “convection-permitting” kilometer-scale horizontal-grid-spacing (Δh) simulations by applying either constant or stochastic multiplicative factors to the horizontal mixing coefficients within the Weather Research and Forecasting Model. In quasi-idealized 1-km Δh simulations of two observationally based squall-line cases, constant enhanced mixing produces larger updraft cores that are more dilute at upper levels, weakens the cold pool, rear-inflow jet, and front-to-rear flow of the squall line, and degrades the model’s effective resolution. Reducing mixing by a constant multiplicative factor has the opposite effect on all metrics. Completely turning off parameterized horizontal mixing produces bulk updraft statistics and squall-line mesoscale structure closest to an LES “benchmark” among all 1-km simulations, although the updraft cores are too undilute. The stochastic mixing scheme, which applies a multiplicative factor to the mixing coefficients that varies stochastically in time and space, is employed at 0.5-, 1-, and 2-km Δh. It generally reduces midlevel vertical velocities and enhances upper-level vertical velocities compared to simulations using the standard mixing scheme, with more substantial impacts at 1- and 2-km Δh compared to 0.5-km Δh. The stochastic scheme also increases updraft dilution to better agree with the LES for one case, but has less impact on the other case. Stochastic mixing acts to weaken the cold pool but without a significant impact on squall-line propagation. It also does not affect the model’s overall effective resolution unlike applying constant multiplicative factors to the mixing coefficients.


2013 ◽  
Vol 141 (8) ◽  
pp. 2759-2777 ◽  
Author(s):  
Guoqing Ge ◽  
Jidong Gao ◽  
Ming Xue

Abstract This paper investigates the impacts of assimilating measurements of different state variables, which can be potentially available from various observational platforms, on the cycled analysis and short-range forecast of supercell thunderstorms by performing a set of observing system simulation experiments (OSSEs) using a storm-scale three-dimensional variational data assimilation (3DVAR) method. The control experiments assimilate measurements every 5 min for 90 min. It is found that the assimilation of horizontal wind can reconstruct the storm structure rather accurately. The assimilation of vertical velocity , potential temperature , or water vapor can partially rebuild the thermodynamic and precipitation fields but poorly retrieves the wind fields. The assimilation of rainwater mixing ratio can build up the precipitation fields together with a reasonable cold pool but is unable to properly recover the wind fields. Overall, data have the greatest impact, while have the second largest impact. The impact of is the smallest. The impact of assimilation frequency is examined by comparing results using 1-, 5-, or 10-min assimilation intervals. When is assimilated every 5 or 10 min, the analysis quality can be further improved by the incorporation of additional types of observations. When are assimilated every minute, the benefit from additional types of observations is negligible, except for . It is also found that for , , and measurements, more frequent assimilation leads to more accurate analyses. For and , a 1-min assimilation interval does not produce a better analysis than a 5-min interval.


Author(s):  
Jake P. Mulholland ◽  
John M. Peters ◽  
Hugh Morrison

AbstractThe influence of vertical wind shear on updraft entrainment in squall lines is not well understood. To address this knowledge gap, a suite of high-resolution idealized numerical model simulations of squall lines were run in various vertical wind shear (hereafter “shear”) environments to study the effects of shear on entrainment in deep convective updrafts. Low-level horizontal mass flux into the leading edge of the cold pool was strongest in the simulations with the strongest low-level shear. These simulations consequently displayed wider updrafts, less entrainment-driven dilution, and larger buoyancy than the simulations with comparatively weak low-level shear. An analysis of vertical accelerations along trajectories that passed through updrafts showed larger net accelerations from buoyancy in the simulations with stronger low-level shear, which demonstrates how less entrainment-driven dilution equated to stronger updrafts. The effects of upper-level shear on entrainment and updraft vertical velocities were generally less pronounced than the effects of low-level shear. We argue that in addition to the outflow boundary-shear interactions and their effect on updraft tilt established by previous authors, decreased entrainment-driven dilution is yet another beneficial effect of strong low-level shear on squall line updraft intensity.


2008 ◽  
Vol 136 (12) ◽  
pp. 4839-4849 ◽  
Author(s):  
Nicholas A. Engerer ◽  
David J. Stensrud ◽  
Michael C. Coniglio

Abstract Cold pools are a key element in the organization of precipitating convective systems, yet knowledge of their typical surface characteristics is largely anecdotal. To help to alleviate this situation, cold pools from 39 mesoscale convective system (MCS) events are sampled using Oklahoma Mesonet surface observations. In total, 1389 time series of surface observations are used to determine typical rises in surface pressure and decreases in temperature, potential temperature, and equivalent potential temperature associated with the cold pool, and the maximum wind speeds in the cold pool. The data are separated into one of four convective system life cycle stages: first storms, MCS initiation, mature MCS, and MCS dissipation. Results indicate that the mean surface pressure rises associated with cold pools increase from 3.2 hPa for the first storms’ life cycle stage to 4.5 hPa for the mature MCS stage before dropping to 3.3 hPa for the dissipation stage. In contrast, the mean temperature (potential temperature) deficits associated with cold pools decrease from 9.5 (9.8) to 5.4 K (5.6 K) from the first storms to the dissipation stage, with a decrease of approximately 1 K associated with each advance in the life cycle stage. However, the daytime and early evening observations show mean temperature deficits over 11 K. A comparison of these observed cold pool characteristics with results from idealized numerical simulations of MCSs suggests that observed cold pools likely are stronger than those found in model simulations, particularly when ice processes are neglected in the microphysics parameterization. The mean deficits in equivalent potential temperature also decrease with the MCS life cycle stage, starting at 21.6 K for first storms and dropping to 13.9 K for dissipation. Mean wind gusts are above 15 m s−1 for all life cycle stages. These results should help numerical modelers to determine whether the cold pools in high-resolution models are in reasonable agreement with the observed characteristics found herein. Thunderstorm simulations and forecasts with thin model layers near the surface are also needed to obtain better representations of cold pool surface characteristics that can be compared with observations.


2020 ◽  
Vol 148 (7) ◽  
pp. 2909-2934
Author(s):  
Yongming Wang ◽  
Xuguang Wang

Abstract Explicit forecasts of a tornado-like vortex (TLV) require subkilometer grid spacing because of their small size. Most previous TLV prediction studies started from interpolated kilometer grid spacing initial conditions (ICs) rather than subkilometer grid spacing ICs. The tornadoes embedded in the 8 May 2003 Oklahoma City tornadic supercell are used to understand the impact of IC resolution on TLV predictions. Two ICs at 500-m and 2-km grid spacings are, respectively, produced through an efficient dual-resolution (DR) and a single-coarse-resolution (SCR) EnVar ingesting a 2-km ensemble. Both experiments launch 1-h forecasts at 500-m grid spacing. Diagnostics of data assimilation (DA) cycling reveal DR produces stronger and broader rear-flank cold pools, more intense downdrafts and updrafts with finer scales, and more hydrometeors at high altitudes through accumulated differences between two DA algorithms. Relative differences in DR, compared to SCR, include the integration from higher-resolution analyses, the update for higher-resolution backgrounds, and the propagation of ensemble perturbations along higher-resolution model trajectory. Predictions for storm morphology and cold pools are more realistic in DR than in SCR. The DR-TLV tracks match better with the observed tornado tracks than SCR-TLV in timing of intensity variation, and in duration. Additional experiments suggest 1) the analyzed kinematic variables strongly influence timing of intensity variation through affecting both low-level rear-flank outflow and midlevel updraft; 2) potential temperature analysis by DR extends the second track’s duration consistent with enhanced low-level stretching, delayed broadening large-scale downdraft, and (or) increased near-surface baroclinic vorticity supply; and 3) hydrometeor analyses have little impact on TLV predictions.


2010 ◽  
Vol 138 (11) ◽  
pp. 4076-4097 ◽  
Author(s):  
George H. Bryan ◽  
Matthew D. Parker

Abstract Rawinsonde data were collected before and during passage of a squall line in Oklahoma on 15 May 2009 during the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). Nine soundings were released within 3 h, allowing for unprecedented analysis of the squall line’s internal structure and nearby environment. Four soundings were released in the prestorm environment and they document the following features: low-level cooling associated with the reduction of solar isolation by a cirrus anvil; abrupt warming (1.5 K in 30 min) above the boundary layer, which is probably attributable to a gravity wave; increases in both low-level and deep-layer vertical wind shear within 100 km of the squall line; and evidence of ascent extending at least 75 km ahead of the squall line. The next sounding was released ∼5 km ahead of the squall line’s gust front; it documented a moist absolutely unstable layer within a 2-km-deep layer of ascent, with vertical air velocity of approximately 6 m s−1. Another sounding was released after the gust front passed but before precipitation began; this sounding showed the cold pool to be ∼4 km deep, with a cold pool intensity C ≈ 35 m s−1, even though this sounding was located only 8 km behind the surface gust front. The final three soundings were released in the trailing stratiform region of the squall line, and they showed typical features such as: “onion”-shaped soundings, nearly uniform equivalent potential temperature over a deep layer, and an elevated rear inflow jet. The cold pool was 4.7 km deep in the trailing stratiform region, and extended ∼1 km above the melting level, suggesting that sublimation was a contributor to cold pool development. A mesoscale analysis of the sounding data shows an upshear tilt to the squall line, which is consistent with the cold pool intensity C being much larger than a measure of environmental vertical wind shear ΔU. This dataset should be useful for evaluating cloud-scale numerical model simulations and analytic theory, but the authors argue that additional observations of this type should be collected in future field projects.


Sign in / Sign up

Export Citation Format

Share Document