Neonatal Screening for Phenylketonuria: Evaluation of an Automated Enzymatic Method

Author(s):  
S Keffler ◽  
R Denmeade ◽  
A Green

An enzymatic assay for phenylalanine using phenylalanine dehydrogenase is available in kit form (Quantase™) for use with dried blood spot specimens and microtitre plates. The method has been automated by use of a sample processor and its performance and suitability for neonatal screening for phenylketonuria has been evaluated by comparison with the Guthrie bacteriological inhibition assay. The enzymatic method performed well with regard to precision and accuracy. It was able to differentiate between normal and raised phenylalanine concentrations for the purpose of screening, thus greatly reducing the repeat rate for equivocal results. There were, however, some concerns about its robustness for screening and its detection limit. The Quantase assay has the potential to be used as a large-scale routine neonatal screening method, if its use can be shown to be cost-effective.

2019 ◽  
Vol 21 (1) ◽  
pp. 51 ◽  
Author(s):  
Ruibin Hu ◽  
Yi Chen

MicroRNAs (miRNAs) are new potential biomarkers for early diagnosis and classification of cancer. This study is the first attempt to use biocatalytic amplification reactions combined with capillary electrophoresis to detect multiple miRNAs simultaneously. In this way, miRNAs, as catalysts, can catalyze two single strands of DNA to form double-strand DNA. Feasibility was demonstrated by non-gel capillary electrophoresis coupled with UV detection (NGCE-UV). The detection limit was improved down to 1.0 nM, having ca. 103-fold improvement. This method has a good linear range of between 3.0 nM and 300 nM, with R2 at 0.99, recovery at 88–115%, and peak area precision at 1–12.7%. Using three target miRNAs as a model can achieve the baseline separation and good selectivity. The proposed biocatalysis coupled with a capillary electrophoresis-based method is simple, rapid, multiplexed, and cost-effective, making it potentially applicable for simultaneous, large-scale screening for other nucleic acids biomarkers and related research.


Author(s):  
Natalie Frede ◽  
Jessica Rojas-Restrepo ◽  
Andrés Caballero Garcia de Oteyza ◽  
Mary Buchta ◽  
Katrin Hübscher ◽  
...  

AbstractHyper-IgE syndromes and chronic mucocutaneous candidiasis constitute rare primary immunodeficiency syndromes with an overlapping clinical phenotype. In recent years, a growing number of underlying genetic defects have been identified. To characterize the underlying genetic defects in a large international cohort of 275 patients, of whom 211 had been clinically diagnosed with hyper-IgE syndrome and 64 with chronic mucocutaneous candidiasis, targeted panel sequencing was performed, relying on Agilent HaloPlex and Illumina MiSeq technologies. The targeted panel sequencing approach allowed us to identify 87 (32 novel and 55 previously described) mutations in 78 patients, which generated a diagnostic success rate of 28.4%. Specifically, mutations in DOCK8 (26 patients), STAT3 (21), STAT1 (15), CARD9 (6), AIRE (3), IL17RA (2), SPINK5 (3), ZNF341 (2), CARMIL2/RLTPR (1), IL12RB1 (1), and WAS (1) have been detected. The most common clinical findings in this cohort were elevated IgE (81.5%), eczema (71.7%), and eosinophilia (62.9%). Regarding infections, 54.7% of patients had a history of radiologically proven pneumonia, and 28.3% have had other serious infections. History of fungal infection was noted in 53% of cases and skin abscesses in 52.9%. Skeletal or dental abnormalities were observed in 46.2% of patients with a characteristic face being the most commonly reported feature (23.1%), followed by retained primary teeth in 18.9% of patients. Targeted panel sequencing provides a cost-effective first-line genetic screening method which allows for the identification of mutations also in patients with atypical clinical presentations and should be routinely implemented in referral centers.


Author(s):  
Yan Pan ◽  
Shining Li ◽  
Qianwu Chen ◽  
Nan Zhang ◽  
Tao Cheng ◽  
...  

Stimulated by the dramatical service demand in the logistics industry, logistics trucks employed in last-mile parcel delivery bring critical public concerns, such as heavy cost burden, traffic congestion and air pollution. Unmanned Aerial Vehicles (UAVs) are a promising alternative tool in last-mile delivery, which is however limited by insufficient flight range and load capacity. This paper presents an innovative energy-limited logistics UAV schedule approach using crowdsourced buses. Specifically, when one UAV delivers a parcel, it first lands on a crowdsourced social bus to parcel destination, gets recharged by the wireless recharger deployed on the bus, and then flies from the bus to the parcel destination. This novel approach not only increases the delivery range and load capacity of battery-limited UAVs, but is also much more cost-effective and environment-friendly than traditional methods. New challenges therefore emerge as the buses with spatiotemporal mobility become the bottleneck during delivery. By landing on buses, an Energy-Neutral Flight Principle and a delivery scheduling algorithm are proposed for the UAVs. Using the Energy-Neutral Flight Principle, each UAV can plan a flying path without depleting energy given buses with uncertain velocities. Besides, the delivery scheduling algorithm optimizes the delivery time and number of delivered parcels given warehouse location, logistics UAVs, parcel locations and buses. Comprehensive evaluations using a large-scale bus dataset demonstrate the superiority of the innovative logistics UAV schedule approach.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 899
Author(s):  
Djordje Mitrovic ◽  
Miguel Crespo Chacón ◽  
Aida Mérida García ◽  
Jorge García Morillo ◽  
Juan Antonio Rodríguez Diaz ◽  
...  

Studies have shown micro-hydropower (MHP) opportunities for energy recovery and CO2 reductions in the water sector. This paper conducts a large-scale assessment of this potential using a dataset amassed across six EU countries (Ireland, Northern Ireland, Scotland, Wales, Spain, and Portugal) for the drinking water, irrigation, and wastewater sectors. Extrapolating the collected data, the total annual MHP potential was estimated between 482.3 and 821.6 GWh, depending on the assumptions, divided among Ireland (15.5–32.2 GWh), Scotland (17.8–139.7 GWh), Northern Ireland (5.9–8.2 GWh), Wales (10.2–8.1 GWh), Spain (375.3–539.9 GWh), and Portugal (57.6–93.5 GWh) and distributed across the drinking water (43–67%), irrigation (51–30%), and wastewater (6–3%) sectors. The findings demonstrated reductions in energy consumption in water networks between 1.7 and 13.0%. Forty-five percent of the energy estimated from the analysed sites was associated with just 3% of their number, having a power output capacity >15 kW. This demonstrated that a significant proportion of energy could be exploited at a small number of sites, with a valuable contribution to net energy efficiency gains and CO2 emission reductions. This also demonstrates cost-effective, value-added, multi-country benefits to policy makers, establishing the case to incentivise MHP in water networks to help achieve the desired CO2 emissions reductions targets.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
D Panatto ◽  
P Landa ◽  
D Amicizia ◽  
P L Lai ◽  
E Lecini ◽  
...  

Abstract Background Invasive disease due to Neisseria meningitidis (Nm) is a serious public health problem even in developed countries, owing to its high lethality rate (8-15%) and the invalidating sequelae suffered by many (up to 60%) survivors. As the microorganism is transmitted via the airborne route, the only available weapon in the fight against Nm invasive disease is vaccination. Our aim was to carry out an HTA to evaluate the costs and benefits of anti-meningococcal B (MenB) vaccination with Trumenba® in adolescents in Italy, while also considering the impact of this new vaccination strategy on organizational and ethics aspects. Methods A lifetime Markov model was developed. MenB vaccination with the two-dose schedule of Trumenba® in adolescents was compared with 'non-vaccination'. Two perspectives were considered: the National Health Service (NHS) and society. Three disease phases were defined: acute, post-acute and long-term. Epidemiological, economic and health utilities data were taken from Italian and international literature. The analysis was conducted by means of Microsoft Excel 2010®. Results Our study indicated that vaccinating adolescents (11th year of life) with Trumenba® was cost-effective with an ICER = € 7,912/QALY from the NHS perspective and € 7,758/QALY from the perspective of society. Vaccinating adolescents reduces the number of cases of disease due to meningococcus B in one of the periods of highest incidence of the disease, resulting in significant economic and health savings. Conclusions This is the first study to evaluate the overall impact of free MenB vaccination in adolescents both in Italy and in the international setting. Although cases of invasive disease due to meningococcus B are few, if the overall impact of the disease is adequately considered, it becomes clear that including anti-meningococcal B vaccination into the immunization program for adolescents is strongly recommended from the health and economic standpoints. Key messages Free, large-scale MenB vaccination is key to strengthening the global fight against invasive meningococcal disease. Anti-meningococcal B vaccination in adolescents is a cost-effective health opportunity.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 661
Author(s):  
Luigi Piazzi ◽  
Stefano Acunto ◽  
Francesca Frau ◽  
Fabrizio Atzori ◽  
Maria Francesca Cinti ◽  
...  

Seagrass planting techniques have shown to be an effective tool for restoring degraded meadows and ecosystem function. In the Mediterranean Sea, most restoration efforts have been addressed to the endemic seagrass Posidonia oceanica, but cost-benefit analyses have shown unpromising results. This study aimed at evaluating the effectiveness of environmental engineering techniques generally employed in terrestrial systems to restore the P. oceanica meadows: two different restoration efforts were considered, either exploring non-degradable mats or, for the first time, degradable mats. Both of them provided encouraging results, as the loss of transplanting plots was null or very low and the survival of cuttings stabilized to about 50%. Data collected are to be considered positive as the survived cuttings are enough to allow the future spread of the patches. The utilized techniques provided a cost-effective restoration tool likely affordable for large-scale projects, as the methods allowed to set up a wide bottom surface to restore in a relatively short time without any particular expensive device. Moreover, the mats, comparing with other anchoring methods, enhanced the colonization of other organisms such as macroalgae and sessile invertebrates, contributing to generate a natural habitat.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 885
Author(s):  
Nicole Knoblauch ◽  
Peter Mechnich

Zirconium-Yttrium-co-doped ceria (Ce0.85Zr0.13Y0.02O1.99) compacts consisting of fibers with diameters in the range of 8–10 µm have been successfully prepared by direct infiltration of commercial YSZ fibers with a cerium oxide matrix and subsequent sintering. The resulting chemically homogeneous fiber-compacts are sinter-resistant up to 1923 K and retain a high porosity of around 58 vol% and a permeability of 1.6–3.3 × 10−10 m² at a pressure gradient of 100–500 kPa. The fiber-compacts show a high potential for the application in thermochemical redox cycling due its fast redox kinetics. The first evaluation of redox kinetics shows that the relaxation time of oxidation is five times faster than that of dense samples of the same composition. The improved gas exchange due to the high porosity also allows higher reduction rates, which enable higher hydrogen yields in thermochemical water-splitting redox cycles. The presented cost-effective fiber-compact preparation method is considered very promising for manufacturing large-scale functional components for solar-thermal high-temperature reactors.


Sign in / Sign up

Export Citation Format

Share Document