Polymer Foam Cell Growth in Microgravity

1992 ◽  
Vol 28 (6) ◽  
pp. 536-556
Author(s):  
Margaret M. Curtin ◽  
Frank S. Tyler ◽  
David L. Wilkinson
Keyword(s):  
2005 ◽  
Vol 284-286 ◽  
pp. 341-344 ◽  
Author(s):  
Cláudia M.S. Ranito ◽  
Fernando A. Costa Oliveira ◽  
João P. Borges

Hydroxyapatite, often in the form of synthetic porous blocks, has been used in the repair of bone defects for over 20 years owing to its biocompatibility and osseoconductive behaviour. Bone ingrowth requires the existence of open and interconnected pores with diameters larger than 150 µm for proper circulation of nutrients. Hence, currently available materials are characterised by poor mechanical properties. Collapse of such products is therefore a major source of concern to surgeons using these weak materials in bone surgery. There is a need to develop stronger highly porous structures through adequate control over the size, shape and volume fraction of pores. In this work, highly porous open-cell hydroxyapatite foams were fabricated by the polymer foam replication process, where two types of polyurethane (PU) foams were infiltrated with optimised slurries containing appropriate binders and ceramic particles, followed by the removal of excess slurry, burning out of the polymer to leave a ceramic replica of the polyurethane and finally high temperature sintering. Open-cell HAP foams with porosities of about 80% were obtained, i.e. 30% higher than that determined for commercial ones (50%). Many of the commercial foam cells approach 500 µm in diameter whereas the developed foam cell size ranged from 300 up to 500 µm. The ultimate compressive strength of the developed foams (1-2 MPa) was found to be higher than that recorded for the commercial ones (0.7 MPa) indicating that these foams can more easily be modelled in theatre. Both the elastic moduli and the compressive strength of the developed foams were found to increase with increasing of the relative density, in accordance with the predictions of available micro-mechanical models.


ACS Nano ◽  
2020 ◽  
Vol 14 (2) ◽  
pp. 1623-1634 ◽  
Author(s):  
Shanqiu Liu ◽  
Sida Yin ◽  
Joost Duvigneau ◽  
G. Julius Vancso

2021 ◽  
Vol 13 (14) ◽  
pp. 17034-17045
Author(s):  
Shanqiu Liu ◽  
Sissi de Beer ◽  
Kevin M. Batenburg ◽  
Hubert Gojzewski ◽  
Joost Duvigneau ◽  
...  

2019 ◽  
Vol 2 (4) ◽  
Author(s):  
Akin Akinci 1 ◽  
Muhammet AYCICEK 1 ◽  
Sedef CAKIR 1

In this study, it is aimed to decrease the weight of the material by using polymer foam materials with lower density instead of commercial polymers which have wide usage area. For this purpose, polymer foam was produced by using an acrylonitrile butadiene styrene (ABS) matrix and an endothermic chemical foam agent using injection molding method. The foam cell morphology, shell layer thickness and mechanical properties of the final part were investigated taking into consideration the weight-changing ratios of the foam agent content (1-1,5-2-2,5-3%).


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 949
Author(s):  
Makoto Iizuka ◽  
Ryohei Goto ◽  
Petros Siegkas ◽  
Benjamin Simpson ◽  
Neil Mansfield

Polyurethane foams have unique properties that make them suitable for a wide range of applications, including cushioning and seat pads. The foam mechanical properties largely depend on both the parent material and foam cell microstructure. Uniaxial loading experiments, X-ray tomography and finite element analysis can be used to investigate the relationship between the macroscopic mechanical properties and microscopic foam structure. Polyurethane foam specimens were scanned using X-ray computed tomography. The scanned geometries were converted to three-dimensional (3D) CAD models using open source, and commercially available CAD software tools. The models were meshed and used to simulate the compression tests using the implicit finite element method. The calculated uniaxial compression tests were in good agreement with experimental results for strains up to 30%. The presented method would be effective in investigating the effect of polymer foam geometrical features in macroscopic mechanical properties, and guide manufacturing methods for specific applications.


Author(s):  
V. F. Allison ◽  
G. C. Fink ◽  
G. W. Cearley

It is well known that epithelial hyperplasia (benign hypertrophy) is common in the aging prostate of dogs and man. In contrast, little evidence is available for abnormal epithelial cell growth in seminal vesicles of aging animals. Recently, enlarged seminal vesicles were reported in senescent mice, however, that enlargement resulted from increased storage of secretion in the lumen and occurred concomitant to epithelial hypoplasia in that species.The present study is concerned with electron microscopic observations of changes occurring in the pseudostratified epithelium of the seminal vescles of aging rats. Special attention is given to certain non-epithelial cells which have entered the epithelial layer.


Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


Author(s):  
K. Florian Klemp ◽  
J.R. Guyton

The earliest distinctive lesions in human atherosclerosis are fatty streaks (FS), characterized initially by lipid-laden foam cell formation. Fibrous plaques (FP), the clinically significant lesions, differ from FS in several respects. In addition to foam cells, the FP also exhibit fibromuscular proliferation and a necrotic core region rich in extracellular lipid. The possible transition of FS into mature FP has long been debated, however. A subset of FS described by Katz etal., was intermediate in lipid composition between ordinary FS and FP. We investigated this hypothesis by electron microscopic cytochemistry by employing a tissue processing technique previously described by our laboratory. Osmium-tannic acid-paraphenylenediamine (OTAP) tissue preparation enabled ultrastructural analysis of lipid deposits to discern features characteristic of mature fibrous plaques.


Author(s):  
S.S. Poolsawat ◽  
C.A. Huerta ◽  
S.TY. Lae ◽  
G.A. Miranda

Introduction. Experimental induction of altered histology by chemical toxins is of particular importance if its outcome resembles histopathological phenomena. Hepatotoxic drugs and chemicals are agents that can be converted by the liver into various metabolites which consequently evoke toxic responses. Very often, these drugs are intentionally administered to resolve an illness unrelated to liver function. Because of hepatic detoxification, the resulting metabolites are suggested to be integrated into the macromolecular processes of liver function and cause an array of cellular and tissue alterations, such as increased cytoplasmic lysis, centrilobular and localized necroses, chronic inflammation and “foam cell” proliferation of the hepatic sinusoids (1-4).Most experimentally drug-induced toxicity studies have concentrated primarily on the hepatic response, frequently overlooking other physiological phenomena which are directly related to liver function. Categorically, many studies have been short-term effect investigations which seldom have followed up the complications to other tissues and organs when the liver has failed to function normally.


Sign in / Sign up

Export Citation Format

Share Document