Evaluation of mechanical properties and microstructure of Al/Al–12%Si multilayer via warm accumulative roll bonding process

2017 ◽  
pp. 002199831769214 ◽  
Author(s):  
N El Mahallawy ◽  
A Fathy ◽  
M Hassan ◽  
W Abdelaziem

In this study, accumulative roll bonding (ARB) process was used to produce Al/Al–12%Si multilayered composites at 300℃. Microstructure and mechanical properties of the composites were studied during various ARB cycles by field emission scanning electron microscope (FE-SEM), tensile test, and the Vickers microhardness test. The FE-SEM results revealed that, as the ARB cycle increases the thickness of individual Al and Al–12%Si sheets decreased. After the 5th cycle, Al–12%Si layers were necked, fractured and dispersed in the aluminum matrix. A new intermetallic phase Al3.21Si0.47 was formed at the Al/Al–12%Si interface, indicating that the ARB process could result in a metallurgical bonding. It was observed that the tensile strength of composites improved by increasing the ARB passes, i.e. the tensile strength of the Al/Al–12%Si composite was measured to be about 5.52 and 2.17 times that of the primary 1050-Al and Al–12%Si sheets, respectively. Observations reveal that the failure mode in ARB-processed composites is of the shear ductile rupture type. The microhardness of the Al and Al–12%Si alloys were raised to 110 HV and 121 HV after five cycles.

2019 ◽  
Vol 54 (10) ◽  
pp. 1259-1271 ◽  
Author(s):  
Medhat Elwan ◽  
A Fathy ◽  
A Wagih ◽  
A R S Essa ◽  
A Abu-Oqail ◽  
...  

In the present study, the aluminum (Al) 1050–FeTiO3 composite was fabricated through accumulative roll bonding process, and the resultant mechanical properties were evaluated at different deformation cycles at ambient temperature. The effect of the addition of FeTiO3 particle on the microstructural evolution and mechanical properties of the composite during accumulative roll bonding was investigated. The Al–2, 4, and 8 vol.% FeTiO3 composites were produced by accumulative roll bonding at room temperature. The results showed improvement in the dispersions of the particles with the increase in the number of the rolling cycles. In order to study the mechanical properties, tensile and hardness tests were applied. It was observed that hardness and tensile strength improve with increasing accumulative roll bonding cycles. The microhardness and tensile strength of the final composites are significantly improved as compared to those of original raw material Al 1050 and increase with increasing volume fraction of FeTiO3, reaching a maximum of ∼75 HV and ∼169 MPa for Al–8 vol.% FeTiO3 at seventh cycle, respectively.


2019 ◽  
Vol 54 (8) ◽  
pp. 1119-1126
Author(s):  
Mohammad Mokhles ◽  
Morteza Hosseini ◽  
Habib Danesh-Manesh ◽  
Seyed Mojtaba Zebarjad

This research studies the structure and mechanical properties of Ni/Ti multilayered composites produced from commercial pure Ni and Ti foils by accumulative roll-bonding technique. To investigate these properties, scanning electron microscopy, Vickers microhardness, and uniaxial tensile tests were conducted at different processing cycles. Studies showed that in terms of structure, Ni and Ti layers maintain their continuity even up to 10 cycles of accumulative roll-bonding. Moreover, the energy-dispersive spectroscopy in scanning electron microscopy detected no deformation induced diffusion or reactive interfacial zones. It was found that by increasing the accumulative roll-bonding cycles, tensile and yield strengths as well as the hardness of the composite enhance and the total elongation reduces continuously.


2004 ◽  
Vol 449-452 ◽  
pp. 161-164 ◽  
Author(s):  
Seong Hee Lee ◽  
Chung Hyo Lee ◽  
Cha Yong Lim

Two and six-layer stack accumulative roll bonding (ARB) processes were applied to commercial purity aluminum in order to investigate the effect of the stacking layer number on the mechanical properties. The initial thickness of the aluminum sheets for two and six-layer stack ARB was 1mm and 0.5mm, respectively. Two-layer stack ARB was performed by 50% reduction per cycle. For six-layer stack ARB, the six aluminum sheets were first stacked together and cold-roll-bonded by 50% reduction rolling, and then followed by four-pass rolling so that the final thickness was 0.5mm. The sheet was then cut to the six pieces of same length and the same procedure was repeated to the sheets. The tensile strength of the ARB processed specimens increases with the number of ARB cycles in both two and six layer stack ARB. The tensile strength is lower by the six-layer stack ARB than that by the two-layer stack ARB. The elongation slightly decreases with the number of the ARB cycles, regardless of the stacking layer number. TEM observation reveals that the grain size of the six-layer stack ARB is larger than that of the two-layer stack ARB. The effects of the number of the layers in stacking are explained by the redundant shear deformation.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5576
Author(s):  
Wen-Jing Wang ◽  
Kam-Chuen Yung ◽  
An-Dong Tang ◽  
Hang-Shan Choy ◽  
Zheng Lv

Carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites were fabricated by Accumulative Roll Bonding (ARB). The surface morphologies, mechanical properties, grains texture and orientation of the Al/CNTs nanocomposites were characterized, and the mechanisms and influences of CNTs contents and ARB cycles on the mechanical performance and grain textures of Al/CNTs were investigated and revealed. The strength of the composites rose with increase of the CNTs content, and the ARB cycles showed a 26% improvement when the CNTs content varied from 0 to 1 volume percent (vol.%). The increase in the mass fraction of the carbon nanotubes made the grain distribution in the Al/CNTs nanocomposite samples more diffuse. Besides, the stable texture of the hot rolled crystal grains on the α orientation are constantly turning to {011}< 011> with the mass fraction of the reinforcing phase increased.


2007 ◽  
Vol 534-536 ◽  
pp. 1381-1384
Author(s):  
Seong Hee Lee ◽  
Si Young Chang ◽  
Sung Tag Oh

The effect of working temperature on microstructure and mechanical properties of ultrafine grained monolithic Al and Al-5vol.%SiCp composite processed by accumulative roll bonding (ARB) was studied. The ARB was performed up to eight cycles (an equivalent strain of ~6.4) without lubricant. The working temperature was varied from ambient temperature to 200 C. The samples processed at temperatures below 100C exhibited an ultrafine grained structure over almost all regions. However, the samples processed at 200C showed an inhomogeneous structure in which a few coarse grains due to an occurrence of conventional recrystallization is partially seen. The tensile strength of both the monolithic Al and the composite decreased with increasing the ARB working temperature. The variation of microstructure and mechanical properties of the composite with the working temperature was compared to that of the monolithic aluminum.


2017 ◽  
Vol 52 (2) ◽  
pp. 147-157 ◽  
Author(s):  
M Abbasi ◽  
SA Sajjadi

Accumulative roll bonding is used for producing multilayered composites, with exciting mechanical properties, via the creation of bonding between dissimilar metallic layers. In this study for the first time, Al–Mg multilayered composites reinforced with nano-Al2O3 particles were produced by the accumulative roll bonding process at different temperatures. However, there was a problem regarding the adhesion of the nanoceramic particles with each other and with the sheet metals. To avoid these disadvantageous effects of the Al2O3 particle addition and to create better adhesion at interfaces, Al and different percentages of Al2O3 powders were ball milled and Al/Al2O3 composite powders were produced. Afterward, the composite powder was added between Al and Mg sheets and they were rolled to 50% reduction in thickness in each cycle. The process was continued up to four cycles at different temperatures. The microstructural evaluation and mechanical properties of aluminum/nanoalumina/magnesium composites showed that 300℃ is suitable temperature for accumulative roll bonding of Al and Mg sheets with nano-Al2O3 particles. Accumulative roll bonded composites with Al/5 wt% Al2O3 composite powder showed higher tensile strength while the maximum bending strength was related to the composites containing Al/10 wt% Al2O3. Fracture surfaces of the nanocomposites revealed a brittle fracture at higher cycles.


2014 ◽  
Vol 794-796 ◽  
pp. 851-856
Author(s):  
Tadashiege Nagae ◽  
Nobuhiro Tsuji ◽  
Daisuke Terada

Accumulative roll-bonding (ARB) process is one of the severe plastic deformation processes for fabricating ultrafine grained materials that exhibit high strength. In aluminum alloys, aging heat treatment has been an important process for hardening materials. In order to achieve good mechanical properties through the combination of grain refinement hardening and precipitation hardening, an Al-4.2wt%Ag binary alloy was used in the present study. After a solution treatment at 550°C for 1.5hr, the alloy was severely deformed by the ARB process at room temperature (RT) up to 6 cycles (equivalent strain of 4.8). The specimens ARB-processed by various cycles (various strains) were subsequently aged at 100, 150, 200, 250°C, and RT. The hardness of the solution treated (ST) specimen increased by aging. On the other hand, hardness of the ARB processed specimen decreased after aging at high temperatures such as 250°C. This was probably due to coarsening of precipitates or/and matrix grains. The specimen aged at lower temperature showed higher hardness. The maximum harnesses achieved by aging for the ST specimen, the specimens ARB processed by 2 cycles, 4 cycles and 6 cycles were 55HV, 71HV, 69HV and 65HV, respectively. By tensile tests it was shown that the strength increased by the ARB process though the elongation decreased significantly. However, it was found that the tensile elongation of the ARB processed specimens was improved by aging without sacrificing the strength. The results suggest that the Al-Ag alloy having large elongation as well as high strength can be realized by the combination of the ARB process for grain refinement and the subsequent aging for precipitation hardening.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4200
Author(s):  
Zhigang Li ◽  
Hao Jiang ◽  
Minghui Wang ◽  
Hongjie Jia ◽  
Hongjiang Han ◽  
...  

As the applications of heterogeneous materials expand, aluminum laminates of similar materials have attracted much attention due to their greater bonding strength and easier recycling. In this work, an alloy design strategy was developed based on accumulative roll bonding (ARB) to produce laminates from similar materials. Twin roll casting (TRC) sheets of the same composition but different cooling rates were used as the starting materials, and they were roll bonded up to three cycles at varying temperatures. EBSD showed that the two TRC sheets deformed in distinct ways during ARB processes at 300°C. Major recrystallizations were significant after the first cycle on the thin sheet and after the third cycle on the thick sheet. The sheets were subject to subsequent aging for better mechanical properties. TEM observations showed that the size and distribution of nano-precipitations were different between the two sheet sides. These nano-precipitations were found to significantly promote precipitation strengthening, and such a promotive effect was referred to as hetero-deformation induced (HDI) strengthening. Our work provides a new promising method to prepare laminated heterogeneous materials with similar alloy TRC sheets.


Sign in / Sign up

Export Citation Format

Share Document