Histomorphometric Study of the Periodontal Vasculature of the Rat Incisor

1992 ◽  
Vol 71 (12) ◽  
pp. 1908-1912 ◽  
Author(s):  
N. Blaushild ◽  
Y. Michaeli ◽  
S. Steigman

This study assessed quantitatively the vascular system in the cementum-related periodontal ligament (PDL) along the rat incisor. The lower left incisors of six rats (± 200 g) were subjected to routine histological procedures and cross-sectioned serially (2 μm), and the distance between each section and the apex was computed. The PDL of five sections at different levels along the tooth was divided into mesial, lingual, and lateral parts. The number and area of small and terminal arterioles, capillaries (C), sinusoids (S), post-capillary venules (PCV), and connecting venules, as well as the area of the PDL, were established. Blood vessels (BV) occupied 47 ± 2% of the PDL area in the apical half and 4 ± 2% at the incisal end. Of the total BV area, 41%, 32%, and 27% were located on the lingual, mesial, and lateral tooth sides, respectively. The majority of BV belonged to the venous system (98.5 ± 0.6% and 82.5 ± 3.0% in the apical and incisal parts, respectively). The apical venous system comprised 95.4 ± 1.6% S and 3.2 ± 1.0% PCV, reversing to 27.2 ± 14.2% S and 55.2 ± 11.3% PCV in the incisal half. The number of arterial profiles increased gradually from 6.8 ± 1.5 at the apex to 25.3±2.4 in the incisal part and that of C from 9.0 ± 1.18 to 25.0 ± 4.3. The extensive vascularization in the apical half of the PDL is consistent with the high metabolic demands and with the need for protective cushioning of the constantly growing dental and periodontal tissues. The paucity of blood supply and the presence of numerous small BVs in the incisal end equate with the metabolic needs of the highly organized supporting tissue in this region.

1988 ◽  
Vol 64 (2) ◽  
pp. 611-619 ◽  
Author(s):  
R. T. Yen ◽  
S. S. Sobin

The elasticity and branching order of noncapillary microscopic blood vessels less than 100 microns diam were studied in human lungs obtained 7–30 h postmortem, using a silicone elastomer method that selectively filled pulmonary arterioles or venules. The lungs were inflated to 10 cmH2O pressure and a gradient of transmural vascular pressure of 0–17 cm H2O, from lobe base to apex, was established in the silicone-filled vascular system. Histological materials were obtained after airway fixation by formaldehyde solution and analyzed for vessel diameter in the branching order of 1, 2, and 3, with the smallest noncapillary vessel designated as order 1, in accord with the Strahler system. The change in vessel diameter within a branching order at different levels of transmural pressure is a derived measure of vascular elasticity expressed as compliance coefficient alpha, alpha Values are 0.128, 0.164, and 0.210 micron/cmH2O or 0.682, 0.472, and 0.354%/cmH2O, respectively, of orders 1–3 for arterioles and 0.187, 0.215, and 0.250 micron/cmH2O or 0.992, 0.612, and 0.424%/cmH2O, respectively, of orders 1–3 for venules. The percent is normalized with D0, which is the value of diameter (D) when the transmural pressure is zero. These data are compared with those for the cat where alpha = 0.274 for similar juxta-alveolar vessels.


1954 ◽  
Vol 44 (1) ◽  
pp. 1-4 ◽  
Author(s):  
A. Myfanwy Goodall ◽  
S. H. Yang

1. A method of perfusing the skin of the flanks and the backs of Ayrshire calves and embryos with indian ink is described.2. The distribution of blood vessels in the perfused skins has been studied.3. Three plexuses of blood vessels have been observed in the skins. The first lies below the corium; the second is at a level between that of the ‘sweat glands’ and the sebaceous glands; and the third extends from beneath the epidermis to above the second plexus and is a deep network of many fine blood vessels.4. The presence of venae comites in the skin is discussed.5. The ‘sweat glands’ appear to have a very poor blood supply, while the hair follicles and papillae are richly supplied.6. Both the ‘sweat glands’ and the hair follicles are supplied with blood from the second plexus.7. The vessels of the third plexus appear to enmesh the individual hair follicles at different levels.8. Blood vessels supplying the skin in the back and flanks of the animals originate from the intercostal arteries and so pass through the heat generating intercostal muscles.


Author(s):  
John L. Beggs ◽  
Peter C. Johnson ◽  
Astrid G. Olafsen ◽  
C. Jane Watkins

The blood supply (vasa nervorum) to peripheral nerves is composed of an interconnected dual circulation. The endoneurium of nerve fascicles is maintained by the intrinsic circulation which is composed of microvessels primarily of capillary caliber. Transperineurial arterioles link the intrinsic circulation with the extrinsic arterial supply located in the epineurium. Blood flow in the vasa nervorum is neurogenically influenced (1,2). Although a recent hypothesis proposes that endoneurial blood flow is controlled by the action of autonomic nerve fibers associated with epineurial arterioles (2), our recent studies (3) show that in addition to epineurial arterioles other segments of the vasa nervorum are also innervated. In this study, we examine blood vessels of the endoneurium for possible innervation.


2017 ◽  
Vol 2 (2) ◽  
pp. 66-70
Author(s):  
N. A. Vaschuk ◽  
◽  
M. U. Prudenko ◽  
N. S. Hloba ◽  
A. A. Kurbel

2016 ◽  
Vol 11 (2) ◽  
pp. 210-217 ◽  
Author(s):  
A.T. Akhmetov ◽  
A.A. Valiev ◽  
A.A. Rakhimov ◽  
S.P. Sametov ◽  
R.R. Habibullina

It is mentioned in the paper that hydrodynamic conditions of a flow in blood vessels with the stenosis are abnormal in relation to the total hemodynamic conditions of blood flow in a vascular system of a human body. A microfluidic device developed with a stepped narrowing for studying of the blood flow at abnormal conditions allowed to reveal blood structure in microchannels simulating the stenosis. Microstructure change is observed during the flow of both native and diluted blood through the narrowing. The study of hemorheological properties allowed us to determine an increasing contribution of the hydraulic resistance of the healthy part of the vessel during the stenosis formation.


2009 ◽  
Vol 88 (8) ◽  
pp. 752-756 ◽  
Author(s):  
A. Miyagawa ◽  
M. Chiba ◽  
H. Hayashi ◽  
K. Igarashi

During orthodontic tooth movement, the activation of the vascular system in the compressed periodontal ligament (PDL) is an indispensable process in tissue remodeling. We hypothesized that compressive force would induce angiogenesis of PDL through the production of vascular endothelial growth factor (VEGF). We examined the localization of VEGF in rat periodontal tissues during experimental tooth movement in vivo, and the effects of continuous compressive force on VEGF production and angiogenic activity in human PDL cells in vitro. PDL cells adjacent to hyalinized tissue and alveolar bone on the compressive side showed marked VEGF immunoreactivity. VEGF mRNA expression and production in PDL cells increased, and conditioned medium stimulated tube formation. These results indicate that continuous compressive force enhances VEGF production and angiogenic activity in PDL cells, which may contribute to periodontal remodeling, including angiogenesis, during orthodontic tooth movement.


1905 ◽  
Vol s2-49 (193) ◽  
pp. 1-38
Author(s):  
RICHARD ASSHETON ◽  
THOMAS G. STEVENS

1. The full-term after-birth of the elephant consists of a chorion from which spring many much-branched villi, which spread out in all directions into plate-like branches. These end in (a) proximal foliaceous terminations, in which the fœtal blood vessels ramify, which interlace with a complicated system of much larger blood channels filled with maternal blood, having well-defined but non-nucleated walls; (b) more distal lobate terminations, which are covered by a wellmarked columnar or cubical epithelium -- presumably the trophoblast -- which are partly embedded in a kind of coagulum or detritus, and partly appear to hang loosely in irregular blood spaces without walls ; (c) the stems of still more prolonged villi, which have been torn off and probably left embedded in the walls of the uterus; (d) a few torn ends of blood-vessels. 2. The main trunks of the villi and their foliaceous terminations are everywhere separated from the maternal bloodchannels by a syncytial layer, which is continuous with the epithelium covering the lobate terminations, and is presumably trophoblastic. 3. The half-term placenta originally examined by Owen in 1850 shows, in its more central region, characters which are essentially similar to those of the full-term specimen, and goes far to prove the existence of longer villi which penetrate deeply into the uterine mucosa. The lateral areas of the zonary belt exhibit many most interesting previous conditions. We are able to see in these the simple terminations of the foetal villi covered with a single layer of trophoblast separated from the uterine tissues by a layer of matei'ial partly maternal and partly of foetal origin. There is no process of growth round existing maternal capillaries to form an angio-plasmode, nor apparently any phagocytic action on the part of the trophoblast. The vascularisation of the after-birth is effected by the invasion of the trophoblast by extravasated maternal blood, which flows at first in intercellular and intervillous passages which form the larger channels of the after-birth maternal vascular system, and then makes its way along intra-cellular or intrasyncytial canals through a plasmodium produced by the breaking down of the trophoblast of two adjoining villi. We think the evidence is in favour of considering the corpuscles floating in this invading stream, which contains no red non-nucleated corpuscles in its more advanced portions, to be of maternal rather than trophoblastic origin. 4. The tissues of the full-term placenta contain pigment granules, which are deposited chiefly in the syncytial layer. This we regard as an excretory product; it is almost quite absent from the tissues of the half-term specimen. Leucocytes, either of maternal or foetal origin, seem to be concerned in the transference of this pigment into the maternal blood stream. 5. The subcircular bodies of Owen we find as described by him and Turner, though we note the presence of minute villi on their outer surface. 6. We confirm the opinion of previous writers that the zonary band in part is a "deciduous" form of placenta, although there is not much maternal tissue except the blood. It is not correct to speak of the after-birth being composed of a "much hypertrophied mncosa layer of the uterus." 7. The placenta of the elephant shows by its long villi, which tend to remain embedded in the uterus wall, a resemblance to the condition found in the Sirenia; by the villous patches at the poles and other villi which come out from the uterus, either with or without their trophoblastic covering, but with no maternal cells attached, a resemblance to the ungulata vera of the Perissodactyl type ; by the invasion of the trophoblast--if such it is--by the maternal blood stream, a resemblance to the Discoplacental type, although the actual manner by which this invasion occnrs would seem to be--so far as our very limited material affords us opportunity of observation--unlike anything hitherto described.1 8. The resemblance, at first sight obvious enough to the zonary placenta of the carnivora, is superficial. The elephant's placenta differs from that of the carnivora in (a) consisting of three areas of attachment instead of one, two of which, are wholly in the non-deciduous type, the other partly deciduous, partly non-deciduous. (b) There is nothing formed comparable to an angio-plasmode. (c) The maternal capillaries do not directly become the maternal vessels of the after-birth.


Author(s):  
Елизавета Александровна Молчанова ◽  
Петр Вячеславович Лужнов

В работе приведены понятия жесткости, эластичности и тонуса сосудов, а также же их взаимосвязь с общим состоянием сосудистой стенки. Описан индекс, объединяющий влияние вышеперечисленных факторов на состояние сосудистой системы и дающий представление о возрасте сосудов пациента, а также показана связь этого индекса с возрастом человека. Представлен обзор способов определения возраста сосудов с помощью контурного анализа пульсовой волны. Среди предложенных способов был выделен подход на основе контурного анализа сигнала пульсовой волны, а также ее второй производной. В данном исследовании проводилась разработка алгоритма расчета показателя возраста сосудов (VA), базирующаяся на анализе сигнала и его второй производной. При этом особое внимание уделялось физической интерпретации параметров, входящих в состав расчетной формулы. С помощью представленного алгоритма в группе из трех испытуемых был определен сосудистый возраст. Из анализа полученных результатов было выявлено влияние физиологических факторов на значение возраста сосудов. Предложены методики, позволяющие исключить влияние этих факторов на значения показателя VA и тем самым получить более точные результаты. Также представлены стратегии дальнейшего развития исследований в этом направлении In The paper presents the concepts of rigidity, elasticity and tone of blood vessels, as well as their relationship with the general state of the vascular wall. An index is described that combines the influence of the above factors on the state of the vascular system and gives an idea of the age of the patient's vessels, and also shows the relationship of this index with the age of a person. An overview of the methods for determining the age of blood vessels using the contour analysis of the pulse wave is presented. Among the proposed methods, an approach based on the contour analysis of the pulse wave signal, as well as its second derivative, was singled out. In this study, an algorithm was developed for calculating the indicator of vascular age (VA), based on the analysis of the signal and its second derivative. In this case, special attention was paid to the physical interpretation of the parameters included in the calculation formula. Using the presented algorithm, vascular age was determined in a group of three subjects. From the analysis of the results obtained, the influence of physiological factors on the value of the age of the vessels was revealed. Methods are proposed that allow to exclude the influence of these factors on the values of the VA indicator and thereby obtain more accurate results. Also presented are strategies for the further development of research in this direction


1993 ◽  
Vol 74 (4) ◽  
pp. 291-292
Author(s):  
I. A. Latfullin ◽  
S. B. Kovyazina ◽  
A. M. Safiullina ◽  
R. S. Karatai

With dental interventions, bacteremia often develops, which is called transient. Its essence is that after laziness of teeth and dental deposits, curettage, endodontic treatment, a microflora appears in the blood, which is far from indifferent to patients, especially those suffering from diseases of the heart, blood vessels, and kidneys. According to Li I terature, transient bacteremia often occurs during interventions in patients with periodontal inflammation. At the same time, a number of authors believe that the frequency of bacteremia and its severity are influenced not only by the state of the periodontal tissues, but also by the volume of intervention.


2000 ◽  
Vol 203 (11) ◽  
pp. 1659-1669 ◽  
Author(s):  
T. Schwerte ◽  
B. Pelster

The analysis of perfusion parameters using the frame-to-frame technique and the observation of small blood vessels in transparent animals using video microscopy can be tedious and very difficult because of the poor contrast of the images. Injection of a fluorescent probe (fluorescein isothiocynate, FITC) bound to a high-molecular-mass dextran improved the visibility of blood vessels, but the gray-scale histogram showed blurring at the edges of the vessels. Furthermore, injection of the fluorescent probe into the ventricle of small zebrafish (Danio rerio) embryos (body mass approximately 1 mg) often resulted in reduced cardiac activity. Digital motion analysis, however, proved to be a very effective tool for analysing the shape and performance of the circulatory system in transparent animals and tissues. By subtracting the two fields of a video frame (the odd and the even frame), any movement that occurred within the 20 ms necessary for the acquisition of one field could be visualised. The length of the shifting vector generated by this subtraction, represented a direct measure of the velocity of a moving particle, i.e. an erythrocyte in the vascular system. By accumulating shifting vectors generated from several consecutive video frames, a complete trace of the routes over which erythrocytes moved could be obtained. Thus, a cast of the vascular system, except for those tiny vessels that are not entered by erythrocytes, could be obtained. Because the gray-scale value of any given pixel or any given group of pixels increased with the number of erythrocytes passing it, digital motion analysis could also be used to visualise the distribution of blood cells in transparent tissues. This method was used to describe the development of the peripheral vascular system in zebrafish larvae up to 8 days post-fertilisation. At this stage, food intake resulted in a clear redistribution of blood between muscle tissue and the gut, and alpha-adrenergic control of peripheral blood flow was established.


Sign in / Sign up

Export Citation Format

Share Document