Circuit Training Improvements in Korean Women with Sarcopenia

2019 ◽  
Vol 126 (5) ◽  
pp. 828-842 ◽  
Author(s):  
Won-Sang Jung ◽  
Yae-Young Kim ◽  
Hun-Young Park

Sarcopenia is defined as an age-related decrease in muscle mass, strength, and function. We investigated the effect of circuit training on body composition, balance, muscle mass and strength, and pulmonary function in Korean women with sarcopenia. We randomly assigned 26 Korean women with sarcopenia ( Mage = 74.9, SD = 4.5 years) to either an exercise group (EG) ( n = 13) or a control group (CG) ( n = 13). The EG performed 25-75 minutes of circuit exercise training (gradually increasing time periods) three times per week over 12 weeks, while the CG maintained their usual daily lifestyle during the intervention period. We measured body weight, body mass index, percent body fat, free fat mass, balance ability, peak torque in shoulder, knee, and lumbar joints normalized for bodyweight (BW), forced vital capacity, percentage of forced expiratory volume in one second, and forced expiratory flow 25–75% before and after the intervention. The EG showed improved body composition (i.e., body mass index, fat-free body mass, fat mass; all p < .032, η2 > 0.180), balance (i.e., right and left of static and dynamic balance and fast 10-m walk; all p < .050, η2 > 0.151), muscular function (i.e., 90°/s and 180°/s peak power per kilogram BW, 90°/s average power per kilogram BW, 180°/s total work, and 180°/s endurance ratio; all p < .045, η2 > 0.157), and pulmonary function (all p < .005, η2 > 0.292). On the other hand, the CG showed no significant changes. Circuit exercise training improves muscle mass and strength, body composition, balance, and pulmonary function in women with sarcopenia.

2020 ◽  
Vol 19 (2) ◽  
Author(s):  
You HW ◽  
Tan PL ◽  
Mat Ludin AF

INTRODUCTION: Physical activity is an essential element in our daily life that leads to long-term health benefits. Physical activity refers to movement of the body that requires energy. Body mass index (BMI) indicates a ratio of body weight to squared height, which is a useful health indicator. On the contrary, body composition describes the body by measuring percentages of fat and muscle in human bodies. MATERIALS AND METHODS: This cross-sectional study aimed to determine the relationship between physical activities, BMI and body composition among pre-university students from one of the universities in Selangor, Malaysia. Stratified random sampling was employed to recruit 70 pre-university students into this study. RESULTS: From the study, 50% of the respondents are categorized as minimally active. In addition, there is significant difference between the physical activity levels of male and female respondents. The relationship between physical activity and BMI indicates a very weak negative correlation. Similarly, the correlation between physical activity and fat mass is a weak negative relationship. Meanwhile, there is a weak positive correlation between physical activity and muscle mass. CONCLUSION: Therefore, it can be concluded that when physical activity increases, BMI and body fat mass will decrease, while muscle mass will increase. Moreover, it was shown that there was a significant relationship between physical activity and body composition. 


2021 ◽  
pp. 1-16
Author(s):  
Majid Mufaqam Syed-Abdul ◽  
Chrissa L. McClellan ◽  
Elizabeth J. Parks ◽  
Stephen D. Ball

Abstract Ageing is associated with reduced muscle mass, strength, flexibility and balance, resulting in a poor quality of life (QOL). Past studies have occurred in highly controlled laboratory settings which provide strong support to determine whether similar gains can be made in community programmes. Twenty participants were enrolled in an eight-week community-based resistance training programme (mean age = 61.3 (standard error (SE) = 0.9) years); Body Mass Index = 32.0 (SE = 1.3) kg/m2). All participants completed surveys to assess outcomes associated with QOL. Given the relationship between muscle function and nerve health, nerve conduction studies (NCS) were also conducted in a separate group of participants (mean age = 64.9 (SE = 2.0) years; Body Mass Index = 32.6 (SE = 1.9) kg/m2). This community-based training programme significantly improved QOL measures in older adults (p < 0.001). Although weight loss was not the primary outcome of the study, participants reduced their body weights (p < 0.001), by primarily reducing fat mass (p = 0.007) while maintaining muscle mass. Significant improvements were observed in muscle strength (2.2%), flexibility and balance (3.2–464.2%, p ⩽ 0.05 for all). Improvements were also observed in plasma glucose (p = 0.05), haemoglobin A1C (p = 0.06) and aldolase enzyme levels (p < 0.001). Scores for surveys on memory and sleep improved (p < 0.05). Improved QOL was associated with increased lean mass (r = −0.714, p = 0.002), decreased fat mass (r = −0.702, p = 0.003) and improved flexibility and balance (r = −0.627, p = 0.008). An eight-week, community-based resistance training programme significantly improved QOL in older adults. Influence on the lipid profile and NCS still needs further investigation.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ana Paula dos Santos Rodrigues ◽  
Lorena Pereira Souza Rosa ◽  
Hugo Delleon da Silva ◽  
Elisângela de Paula Silveira-Lacerda ◽  
Erika Aparecida Silveira

Background. ThePPARG2Pro12Ala (rs1801282) andIL6-174G >C (rs1800795) have important function in body weight regulation and a potential role in obesity risk. We aimed to investigate the association betweenPPARG2Pro12Ala andIL6-174G >C variants and the genotypes interaction with body composition, metabolic markers, food consumption, and physical activity in severely obese patients.Methods. 150 severely obese patients (body mass index (BMI) ≥ 35 kg/m2) from Central Brazil were recruited. Body composition, metabolic parameters, physical activity, and dietary intake were measured. The genotype was determined by the qPCR TaqMan Assays System. Multiple linear regression and multiple logistic regression models were fitted adjusting for confounders.Results. Ala carriers of the Pro12Ala polymorphism had higher adiposity measures (BMI:p=0.031, and fat mass:p=0.049) and systolic blood pressure (p=0.026) compared to Pro homozygotes. We found no important associations between the -174G >C polymorphism and obesity phenotypes. When genotypes were combined, individuals with genotypes ProAla + AlaAla and GC + CC presented higher BMI (p=0.029) and higher polyunsaturated fatty acids (PUFAs) consumption (p=0.045) compared to the ones with genotypes ProPro and GG, and individuals carriers of thePPARG2Ala allele only (genotype ProAla + AlaAla and GG) had higher fat mass and systolic and diastolic blood pressure compared to the ones with genotypes ProPro and GG.Conclusions. Severely obese individuals carrying the Ala allele of thePPARG2Pro12Ala polymorphism had higher measures of adiposity and blood pressure, while no important associations were found for theIL6-174G >C polymorphism.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Emily Farina ◽  
Lauren Thompson ◽  
Joseph Knapik ◽  
Stefan Pasiakos ◽  
James McClung ◽  
...  

Abstract Objectives To determine whether usual energy intake and body composition are associated with attrition from an arduous military selection course characterized by energy deficit and strenuous physical events, including fitness tests, loaded road marches, runs, land navigation, and an obstacle course. Methods Energy intake and body composition were assessed in U.S. Army Soldiers (n = 776) at the start of a military assessment and selection course. Usual energy intake (kcal) over the previous year was estimated from a 127-item Block food frequency questionnaire. Body composition measures, including body mass (kg), body mass index (BMI, body mass in kg/height in m2), fat free mass index (FFMI, fat free mass in kg/height in m2), and fat mass index (FMI, fat mass in kg/height in m2) were assessed by calibrated scale and 3-site skinfold caliper measures. Associations between energy intake, body composition, and demographics were determined with analysis of variance. Logistic regression was used to determine likelihood of attrition [odds ratio (OR), 95% confidence interval (CI)] based on quartiles of energy intake and body composition. Models were adjusted for age, education, duration of aerobic exercise, duration of strength training, smoking status, and smokeless tobacco use. Results Soldiers that were younger (18–24 y), engaged in longer duration of aerobic exercise (≥200 min/wk) and strength training (≥400 min/wk), had more education (≥some college), and were smokeless tobacco users had higher energy intakes (P < 0.05). Higher energy intake was associated with higher body mass and FFMI (P < 0.05). After adjustment, Soldiers with higher energy intake, body mass, BMI, and FFMI were less likely to fail the strenuous course (Q1 vs. Q2, Q3, and Q4: OR range = 0.25–0.54; 95% CI lower bound range = 0.15–0.33; 95% CI upper bound range = 0.46–0.87). FMI was not associated with attrition. Conclusions Optimization of body composition by adequate consumption of calories prior to a physically demanding military selection course may be associated with reduced attrition. Funding Sources Supported by U.S. Army Medical Research and Materiel Command. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Army or the Department of Defense. Supporting Tables, Images and/or Graphs


Medicina ◽  
2010 ◽  
Vol 46 (2) ◽  
pp. 129 ◽  
Author(s):  
Arvydas Stasiulis ◽  
Asta Mockienė ◽  
Daiva Vizbaraitė ◽  
Pranas Mockus

The objective of the study was to assess changes in body composition, blood lipid and lipoprotein concentrations in 18–24-year-old women during the period of two-month aerobic cycling training. Material and methods. Young, healthy, nonsmoking women (n=19) volunteered to participate in this study. They were divided in two groups: experimental (E, n=10) and control (C, n=9). The subjects of group E exercised 3 times a week with intensity of the first ventilatory threshold and duration of 60 min. The group C did not exercise regularly over a two-month period of the experiment. The subjects of group E were tested before and after 2, 4, 6 and 8 weeks of the experiment. The participants of group C were tested twice with an eight-week interval. Results. Body weight, body mass index, body fat mass, and triacylglycerol (TAG) concentration decreased and high-density lipoprotein cholesterol (HDL-ch) concentration increased after the 8-week training program in the experimental group (P<0.05). Blood total cholesterol (Tch) and low-density lipoprotein cholesterol (LDL-ch) concentrations did not change significantly. Body weight and body mass index started to decrease after 2 weeks of the experiment, but significant changes were observed only after 6 and 8 weeks. Body fat mass was significantly decreased after 2 and 8 weeks of aerobic training. A significant increase in HDL-ch concentration was observed after 4, 6, and 8 weeks. A significant decrease in TAG concentration was observed after 2-week training. No significant changes in all the parameters except TAG (it was slightly increased) were seen in the control group. Conclusions. The two-month aerobic cycling training (within VT1, 60-min duration, three times a week) may induce significant changes in the parameters of body composition – body weight, body mass index, body fat mass, and blood lipids – in young women. The following significant changes were observed: TAG level decreased after 2 weeks, body mass and body mass index decreased after 6 weeks, body fat mass decreased and HDL-ch level increased after 8 weeks. Peak oxygen uptake increased after 4 weeks.


Retos ◽  
2020 ◽  
pp. 539-546
Author(s):  
Luis Hebert Palma Pulido ◽  
Carlos Hernán Méndez Díaz ◽  
Alfonso Cespedes Manrrique ◽  
Jorge Andrés Castro Mejía ◽  
Alejandro Viveros Restrepo ◽  
...  

 El siguiente estudio, tuvo como finalidad, determinar la correlación entre la composición corporal y la condición física en niños de sexto grado de la Institución Educativa de Tuluá, Colombia. El estudio fue no experimental, descriptivo y de alcance correlacional. La valoración de la composición corporal, se realizó mediante el índice de masa corporal y el porcentaje de grasa (fórmula de Slaughter y Lohmann). La condición física, se determinó por medio de la batería Fitnessgram. La muestra fue de 193 niños y niñas, entre ocho y 12 años. Los resultados se determinaron, por medio de estadísticos descriptivos y correlación de Pearson. Estos resultados, evidenciaron una r=-0,52 y -0,72 para niño y niña respectivamente, entre el porcentaje de grasa y la capacidad cardiovascular. Las correlaciones entre el índice de masa corporal y peso corporal, con el porcentaje de grasa fueron, r=0,59 niña 0,76 y niño y r=0,46 niña y 0,67 niño respectivamente, indicando que, a mayor masa corporal mayor grasa. La correlación entre masa grasa y el test de barra fija fue inversa, pero no alta, r=-0,23 y -0,24, sin embaro, cuando este test se correlacionó con el índice de masa corporal, dicha correlación fue mayor, r=-0,57 y -0,78, reflejando que, la masa corporal, afectó la resistencia en la barra. La flexibilidad y agilidad, no se alteraron por la masa grasa, r < 0,20. Como conclusión, se evidencia que, la masa grasa puede disminuir la capacidad cardiovascular y resistencia a la fuerza, sin embargo, la flexibilidad y la velocidad-agilidad pueden no alterarse.  Abstract. The following study aimed at determining the correlation between body composition and physical condition in sixth grade students from the high school Institución Educativa Moderna in Tuluá, Colombia. It was carried as a non-experimental, descriptive, and correlational study. The assessment of body composition was carried out using the body mass index and the fat percentage based on Slaughter and Lohmann formula. Physical condition was determined by using the Fitnessgram battery. The sample consisted of 193 boys and girls, around eight and 12 years old. The results were determined by means of descriptive statistics and Pearson correlation. These results showed r = -0.52 and -0.72 for boys and girls respectively, after correlating the percentage of fat and cardiovascular capacity. The correlation of their body mass index and their body weight, towards the percentage of fat were: r = 0.59 girl, 0.76 boy and r = 0.46 girl and 0.67 boy respectively, indicating that, the higher the body mass the higher the increase of fat. The correlation between fat mass and the fixed bar test was inverse, but not high: r = -0.23 and -0.24. However, when this test was correlated with the body mass index, that correlation was higher: r = -0.57 and -0.78, reflecting that the body mass affected the resistance at the bar. Flexibility and agility were not altered by fat mass: r <0.20. In conclusion, it is evidenced that fat mass can decrease cardiovascular capacity and resistance to strength, however, flexibility and speed-agility may not be altered.


2014 ◽  
Vol 66 (12) ◽  
pp. 3511-3520 ◽  
Author(s):  
Jong Jin Yoo ◽  
Nam Han Cho ◽  
Seung Hun Lim ◽  
Hyun Ah Kim

2018 ◽  
Vol 2 (73) ◽  
Author(s):  
Sandrija Čapkauskienė ◽  
Kristina Visagurskienė ◽  
Rima Bakienė ◽  
Irena Vitkienė ◽  
Daiva Vizbaraitė

Childhood obesity is a key public health issue around the globe in developed and developing countries (Dugan, 2008). The recent worldwide increase in the prevalence of childhood obesity may be due in part to a decrease in children’s physical activity levels (Ball et al., 2001). It is necessary to develop early interventions to improve physical fitness in children and to prevent the increase of childhood obesity (Brunet et al., 2006). So, the aim of this study was to evaluate the body composition and physical fitness of children aged 5—7 years and to estimate the interaction between body composition components and physical fitness tests. Participants: 216 children participated in this study: 104 girls, mean age 5.90 ± 0.63 years and 112 boys — mean age 5.98 ± 0.50 years from Kaunas city (Lithuania) preschools. Methods: all the subjects have been measured for their height, body mass, waist circumference (WC) and skinfolds at 2 different places — triceps and subscapular. Body mass index (BMI) and percentage body fat mass (BFM) were evaluated. All the participants did four physical fitness tests including speed shuttle run, 20 meters distance run, standing long jump and throwing 1 kg ball. General physical fitness level was evaluated based on B. Sekita (1988) methods. Results. Results showed that BMI did not significantly differ between boys and girls, and was evaluated as “optimal” for both groups. BFM was significantly higher in girls (p < 0.001), and WC did not differ between genders. But WC had a tendency to increase with age in both boys and girls. Strong relationship was observed between BMI and BFM (r = 0.660, r = 0.660 respectively; p < 0.01), and between BMI and WC (r = 0.703, r = 0.826 respectively; p < 0.01) for both boys and girls. The results of physical tests showed that boys did all the tests better than girls (p < 0.01). When we evaluated the general physical fitness of each child, the results indicated that their physical fitness waslow, evaluated as “good enough” for most boys and girls. General physical fitness of children negatively but slightly correlated with BFM (r = –0.201; p < 0.001), it indicated that higher BFM determined lower evaluation of general physical fitness.Conclusions. Optimal body weight, according to body mass index, percentage body fat mass and waist circumference, was established for the bigger part of children, aged 5—7 years old. This study shows that physical fitness of children was low — evaluated as “good enough” and negatively correlated with body fat mass, showing that high body fat mass negatively impacted physical fitness.Key words: body mass index, percentage body fat mass, waist circumference, physical fitness.


2018 ◽  
Author(s):  
Charis Bridger Staatz ◽  
Rebecca Hardy

Background Although research has found associations between increasing number of children and higher body mass index (BMI), there has been limited research investigating the association with body composition despite abdominal fat being associated with cardiovascular and metabolic risk independently of general adiposity. Most existing research has focussed on women, but investigating the relationship in men can help distinguish biological effects of pregnancy from social pathways related to parenthood. Methods Using the MRC National Survey of Health and Development (NSHD) multiple regression models were applied to test associations between number of children and body composition at age 60-64 (N=2229) and body mass index (BMI) and waist circumference (WC) at ages 60-64 and 69 (N=2149). Results In adjusted models, associations were observed between increasing numbers of children and increasing fat-adjusted lean mass index in women (p=0.06). Among men, those with children had 0.59kg (95% CI: 0.15 to 1.02) greater lean mass index than those without and fat:lean mass ratio was greater in those with 4+ children because of their slightly higher mean fat mass. Weak evidence of a higher android:gynoid mass ratio in women with children (0.03, 95% CI: 0.00,0.06, p=0.1) was observed with no associations with fat mass index or android or gynoid fat mass. Increasing BMI was observed with increasing parity in women at 60-64 and more strongly at 69 years where associations among men were also observed more clearly. Conclusion There was little evidence of a consistent association between number of children and body composition in early old age. The strongest associations are observed for lean, rather than fat mass, and in men rather than women, suggesting little evidence of biological effects of pregnancy in women. The results indicate social pathways associated with parenthood are the likely underlying mechanisms, with suggestion there may be selection into parenthood among men.


Sign in / Sign up

Export Citation Format

Share Document