Experimental and numerical analysis of the spray characteristics of biodiesel–ethanol fuel blends

SIMULATION ◽  
2019 ◽  
pp. 003754971987024
Author(s):  
Limin Geng ◽  
Yuantao Xie ◽  
Jue Wang ◽  
Wenchuan Liu ◽  
Chong Li ◽  
...  

The effects of adding ethanol on the macroscopic and microscopic spray characteristics of biodiesel were investigated by experimental and numerical methods. The spray tip penetration (STP) was recorded with a high-speed camera system, while the statistical size distribution of atomized droplets and the Sauter mean diameter (SMD) were obtained using a Malvern laser particle size analyzer. The spray calculation models were established with Fluent software, and the calculation results were validated by the experimental results. Then the numerical simulation of the spray characteristics for diesel, biodiesel, and biodiesel–ethanol fuel blends were conducted. The results showed that the farther the distance is from the nozzle exit, the lower the concentration and the velocity of atomized droplets. The concentration and the velocity of atomized droplets gradually decrease along the radial direction, extending from the center to the periphery. The turbulent kinetic energy (TKE) at the front and rear of the spray is relatively lower, while the TKE is higher in the middle of the spray, and turbulent vortices appear on both sides of the axial spray center. In addition, the spray characteristics of the different fuels revealed that compared to diesel, the STP and SMD of biodiesel increase by 33.59% and 33.08% on average, respectively. The maximum concentration of biodiesel is higher than that of diesel, and the concentration distribution is more concentrated. The droplet velocity and TKE of biodiesel respectively decrease by 7.38% and 14.49% in comparison to diesel. When ethanol was added to biodiesel by a volume percentage of 30%, the STP and SMD of biodiesel–ethanol fuel blends reduce by 22.05% and 20.88%, respectively. The concentration distribution, the velocity distribution, and the TKE distribution of the fuel blends are similar to that of diesel. This indicates that adding 30% ethanol to biodiesel can effectively improve its spray quality.

2019 ◽  
Author(s):  
Tairan Chen ◽  
Guoyu Wang ◽  
Junhao Yan ◽  
Timothy Lee ◽  
Biao Huang ◽  
...  

2014 ◽  
Vol 960-961 ◽  
pp. 1394-1399
Author(s):  
Jian Wu ◽  
Li Li Zhu ◽  
Zhan Cheng Wang ◽  
Bin Xu ◽  
Hong Ming Wang

we studied the spray characteristics of n-butanol/diesel fuel blends using a high-speed camera and schlieren system, and analyzed the effect of different fuels, ambient pressure and injection pressure conditions on the spray penetration, spray cone angle, spray area, et al. The results showed that, at the same injection pressure, as the increase of ambient pressure, the spray cone angle of the same volume of fuel increases gradually, the spray penetration and the spray area decreases; under the same ambient pressure, the spray penetration, spray cone angle and spray area increase gradually with the increasing injection pressure, but when the injection pressure increases enough, the parameters are roughly the same; and the parameters basically all increase with the adding of n-butanol.


2021 ◽  
Author(s):  
Niranjan Miganakallu ◽  
Ashwin Karthik Purushothaman ◽  
William R. Atkinson ◽  
Nathan Peters ◽  
Tadeu Miguel Malago Amaral ◽  
...  

Abstract In this study, the effect of elevated fuel temperatures on the spray characteristics of gasoline-ethanol blends were studied in an optically accessible constant volume spray and combustion vessel. MAHLE SmartHeat® is a fuel heater located directly upstream of the fuel injector. High speed images of the spray injected from a six-hole gasoline direct injection injector typical of a side-injection engine were captured with shadowgraph imaging technique. Two fuel blends, gasoline with 10% ethanol (E10) and 85% ethanol (E85) were investigated at ambient conditions of 1 bar, 45°C and 4 bar, 180°C respectively at an injection pressure of 100 bar. Fuel temperatures were varied from 75 to 250°C. A comparison of the near nozzle and the global spray characteristics was made for the two fuels at those temperatures. Results showed that flash boiling leads to two primary effects for the two fuel blends: (i) an appreciable increase in spray angle near the exit of the nozzle followed by (ii) a decrease in spray angle downstream of the nozzle due to the interaction of the plumes and the collapsing of the spray. Furthermore, for both fuel blends, upon flash boiling, entrainment and mixing were reduced downstream of the nozzle because of the collapse of the spray. To reduce this effect, nozzle orientations and geometries should be modified.


Author(s):  
Manish Kumar ◽  
Srinibas Karmakar ◽  
Sonu Kumar ◽  
Saptarshi Basu

Potential alternative fuels that can mitigate environmental pollution from gas turbine engines (due to steep growth in the aviation sector globally) are getting significant attention. Spray behavior plays a significant role in influencing the combustion performance of such alternative fuels. In the present study, spray characteristics of Kerosene-based fuel (Jet A-1) and alternative aviation fuels such as butyl butyrate, butanol, and their blends with Jet A-1 are investigated using an air-blast atomizer under different atomizing air-to-fuel ratios. Phase Doppler Interferometry has been employed to obtain the droplet size and velocity distribution of various fuels. A high-speed shadowgraphy technique has also been adopted to make a comparison of ligament breakup characteristics and droplet formation of these alternative biofuels with that of Jet A-1. An effort is made to understand how the variation in fuel properties (mainly viscosity) influences atomization. Due to the higher viscosity of butanol, the SMD is higher, and the droplet formation seems to be delayed compared to Jet A-1. In contrast, the lower viscosity of butyl butyrate promotes faster droplet formation. The effects of the blending of these biofuels with Jet A-1 on atomization characteristics are also compared with that of Jet A-1.


2012 ◽  
Vol 487 ◽  
pp. 203-207
Author(s):  
Gong Xue Zhang ◽  
Xiao Kai Shen

Purpose, with the application of workbench finite element analysis software, get the analysis results of DVG 850 high-speed vertical machining center via the modal analysis and harmonic response analysis. Use the calculation results for reference, put forward the improved method, and prove the credibility of the simulation analysis by testing DVG 850 prototype.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2098
Author(s):  
Tomas Kalous ◽  
Pavel Holec ◽  
Jakub Erben ◽  
Martin Bilek ◽  
Ondrej Batka ◽  
...  

The electrospinning process that produces fine nanofibrous materials have a major disadvantage in the area of productivity. However, alternating current (AC) electrospinning might help to solve the problem via the modification of high voltage signal. The aforementioned productivity aspect can be observed via a camera system that focuses on the jet creation area and that measures the average lifespan. The paper describes the optimization of polyamide 6 (PA 6) solutions and demonstrates the change in the behavior of the process following the addition of a minor dose of oxoacid. This addition served to convert the previously unspinnable (using AC) solution to a high-quality electrospinning solution. The visual analysis of the AC electrospinning of polymeric solutions using a high-speed camera and a programmable power source was chosen as the method for the evaluation of the quality of the process. The solutions were exposed to high voltage applying two types of AC signal, i.e., the sine wave and the step change. All the recordings presented in the paper contained two sets of data: firstly, camera recordings that showed the visual expression of electrospinning and, secondly, signal recordings that provided information on the data position in the signal function.


2012 ◽  
Vol 15 (3) ◽  
pp. 193-195 ◽  
Author(s):  
K. Hashimoto ◽  
A. Hori ◽  
T. Hara ◽  
S. Onogi ◽  
H. Mouri

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1561
Author(s):  
Hery Tri Waloyo ◽  
U Ubaidillah ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Muhammad Nizam ◽  
Muhammad Aziz

The braking torque mathematical modelling in electromagnetic eddy current brake (ECB) often ignores the skin effect that occurrs during operation. However this phenomenon can not be simply neglected. Therefore, this paper presents a mathematical model of braking torque for a unipolar axial type of ECB system with a non-magnetic disk, which considers the skin effects. The use of mathematical models that consider the existence of skin effects is significant in approaching the braking torque according to the actual condition. The utilization of generic calculations to the model of the ECB braking torque leads to invalid results. Hence, in this paper, the correction factor was added to improve the braking torque calculation as a comparator to the proposed equation. However, the modification and addition of the correction factor were only valid to estimate the low-speed regimes of torque, but very distant for the high-speed condition. From the comparison of calculated values using analytical and 3D modelling, the amount of braking torque at a low speed was found to have an average error for the equation using a correction factor of 1.78 Nm, while after repairing, a value of 1.16 Nm was obtained. For the overall speed, an average error of 14.63 Nm was achieved, while the proposed equation had a small difference of 1.79 Nm. The torque difference from the calculation results of the proposed model with the measurement value in the experiment was 4.9%. Therefore, it can be concluded that the proposed equation provided a better braking torque value approach for both low and high speeds.


Sign in / Sign up

Export Citation Format

Share Document