Relationship between processing and electrical properties in SEBS/CNT nanocomposites

2016 ◽  
Vol 49 (4) ◽  
pp. 356-367 ◽  
Author(s):  
Paulina Latko ◽  
Mateusz Bielecki ◽  
Rafał Kozera ◽  
Anna Boczkowska

This article describes nanocomposites of triblock copolymer styrene–ethylene/butylene–styrene doping with 5 wt% of multiwalled carbon nanotubes (CNTs) prepared by melt mixing process. The selection of processing temperature was made according to the state of macrodispersion of CNTs within polymer matrix. Afterwards, the relationship between rotational speed, mixing time and electrical conductivity has been noted. It was confirmed that the temperature of 300°C and rotational speed of 100 r/min lead to significant decreasing of CNT agglomerations resulting in high electrical conductivity equal to 8.0 S/m.

2012 ◽  
Vol 729 ◽  
pp. 332-337
Author(s):  
G. Dogossy ◽  
E. Sági ◽  
Ferenc Ronkay

Three ultrahigh molecular weight polyethylene (UHMWPE) composites of differing composition, reinforced with multiwalled carbon nanotubes (MWCNT) were prepared. The homogeneous distribution of MWCNT has been attempted by two dry blending methods and one melt-mixing process. The efficiency of the various methods was characterized by their effects on the quasi-static and dynamic physical properties of the composites. In the case of composites manufactured by ball milling the effects of various adhesion promoter additives (compatibilizers) has also been studied by analyzing the tensile, flexural, Charpy impact and wear properties of the composites.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2879 ◽  
Author(s):  
Lazaros Tzounis ◽  
Markos Petousis ◽  
Sotirios Grammatikos ◽  
Nectarios Vidakis

Three-dimensional (3D) printing of thermoelectric polymer nanocomposites is reported for the first time employing flexible, stretchable and electrically conductive 3D printable thermoplastic polyurethane (TPU)/multiwalled carbon nanotube (MWCNT) filaments. TPU/MWCNT conductive polymer composites (CPC) have been initially developed employing melt-mixing and extrusion processes. TPU pellets and two different types of MWCNTs, namely the NC-7000 MWCNTs (NC-MWCNT) and Long MWCNTs (L-MWCNT) were used to manufacture TPU/MWCNT nanocomposite filaments with 1.0, 2.5 and 5.0 wt.%. 3D printed thermoelectric TPU/MWCNT nanocomposites were fabricated through a fused deposition modelling (FDM) process. Raman and scanning electron microscopy (SEM) revealed the graphitic nature and morphological characteristics of CNTs. SEM and transmission electron microscopy (TEM) exhibited an excellent CNT nanodispersion in the TPU matrix. Tensile tests showed no significant deterioration of the moduli and strengths for the 3D printed samples compared to the nanocomposites prepared by compression moulding, indicating an excellent interlayer adhesion and mechanical performance of the 3D printed nanocomposites. Electrical and thermoelectric investigations showed that L-MWCNT exhibits 19.8 ± 0.2 µV/K Seebeck coefficient (S) and 8.4 × 103 S/m electrical conductivity (σ), while TPU/L-MWCNT CPCs at 5.0 wt.% exhibited the highest thermoelectric performance (σ = 133.1 S/m, S = 19.8 ± 0.2 µV/K and PF = 0.04 μW/mK2) among TPU/CNT CPCs in the literature. All 3D printed samples exhibited an anisotropic electrical conductivity and the same Seebeck coefficient in the through- and cross-layer printing directions. TPU/MWCNT could act as excellent organic thermoelectric material towards 3D printed thermoelectric generators (TEGs) for potential large-scale energy harvesting applications.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 189 ◽  
Author(s):  
Petra Pötschke ◽  
Fanny Mothes ◽  
Beate Krause ◽  
Brigitte Voit

Small-scale melt mixing was performed for composites based on polypropylene (PP) and 0.5–7.5 wt % multiwalled carbon nanotubes (MWCNT) to determine if masterbatch (MB) dilution is a more effective form of nanofiller dispersion than direct nanotube incorporation. The methods were compared using composites of five different PP types, each filled with 2 wt % MWCNTs. After the determination of the specific mechanical energy (SME) input in the MB dilution process, the direct-incorporation mixing time was adjusted to achieve comparable SME values. Interestingly, the electrical resistivity of MB-prepared samples with 2 wt % MWCNTs was higher than that of those prepared using direct incorporation—despite their better dispersion—suggesting more pronounced MWCNT shortening in the two-step procedure. In summary, this study on PP suggests that the masterbatch approach is suitable for the dispersion of MWCNTs and holds advantages in nanotube dispersion, albeit at the cost of slightly increased electrical resistivity.


2006 ◽  
Vol 15-17 ◽  
pp. 215-219 ◽  
Author(s):  
J.H Yun ◽  
J.H. Kim ◽  
J.S. Park ◽  
Young Do Park ◽  
Yong Ho Park ◽  
...  

A Cu-TiB2 composite was successfully fabricated by in-situ liquid mixing process, and its microstructure, mechanical properties as well as electrical conductivity were evaluated. For Cu-2vol.%TiB2 composite, the hardness was as high as 5GPa and the Young’s modulus was 130GPa. And hardness and Young’s modulus of Cu-6vol.%TiB2 composite was 5.6Gpa and 138GPa, respectively. With the increase of the TiB2 content, hardness and Young’s modulus of Cu-10vol.%TiB2 composite were 20 and 12%, respectively, which was higher than that of Cu-2vol.%TiB2 composite. Young’s modulus of the Cu-TiB2 composite in this paper was in good agreement with the prediction by Hashin-Shtrikman (H-S) model. Furthermore, the electrical conductivity of the Cu-TiB2 composite showed its maximum value of about 78%IACS and decreased with the increase of the TiB2.


Food Research ◽  
2021 ◽  
Vol 5 (S1) ◽  
pp. 19-24
Author(s):  
Mohd Radzuan N. ◽  
Anuar M.S. ◽  
S.M. Tahir

This study presented the homogeneity obtained when mixing cohesive and flowable powder materials using a laboratory powder mixer. The mixing process parameters studied were the mixing time and the mixer rotational speed (20 rpm, 40 rpm and 60 rpm) at the different ratios (95%: 5%, 50%: 50% and 5%: 95%) of the cohesive cocoa and flowable mannitol powder materials. The homogeneity sampled at the powder bed surface showed that only at the highest rotational speed of 60 rpm used in this work yield acceptable homogeneity at the two extremes of the powder mass ratios; 95%: 5% and 5%: 95% of mannitol: cocoa for some of the locations on the powder bed surface, especially near the wall of the mixer. Other combinations of the experimental conditions did not yield acceptable mixture homogeneity. These results showed the difficulties in obtaining a homogeneous powder mix when mixing cohesive powder materials, especially in academic teaching and research laboratories using a simple powder mixer apparatus.


2010 ◽  
Vol 447-448 ◽  
pp. 619-623
Author(s):  
Yong Zheng Pan ◽  
Lin Li ◽  
Siew Hwa Chan ◽  
Jian Hong Zhao

Composites of polypropylene (PP) and multi-walled carbon nanotubes (MWCNTs) were prepared by a micro melt mixing process. The molecular weight of PP was varied from 190,000 to 340,000 to examine its effects on the electrical conductivity. It has been discovered that a significant enhancement of electrical conductivity could be achieved by a thermal post annealing process above the melting temperature of PP. Factors such as annealing time, temperature, viscosity of PP, and content of MWCNTs all affected the enhancement of electrical conductivity. Re-aggregation of MWCNTs and the subsequent formation of MWCNT networks during annealing are considered to be the main reasons for the quick enhancement of electrical conductivity. The observed effect of molecular weight of PP on the enhancement of electrical conductivity suggested that the enhancement process could be controlled by diffusion of MWCNTs.


2011 ◽  
Vol 52-54 ◽  
pp. 31-36 ◽  
Author(s):  
Hendra Suherman ◽  
Jaafar Sahari ◽  
Abu Bakar Sulong

The objective of this paper is optimization mixing parameters in terms of mixing process of polymer nanocomposites using Taguchi method. Considering the mixing parameters such as rotational speed, mixing temperature and mixing time were performed to reveal the electrical conductivity data. Taguchi method was used by electrical conductivity analyses based on three level factorial designs. Orthogonal arrays of Taguchi, the signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) were utilized to find the optimal levels and the effect of mixing parameters on electrical conductivity. Confirmation analysis measurements with the optimal levels of mixing parameters were carried out in order to show the optimum electrical conductivity of Taguchi method. The result shows that Taguchi method is effective in solving the quality problem occurred on the mixing parameters of the polymer nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document