scholarly journals Carbon Dioxide Adsorption and Decolourizing Power of Activated Carbons Prepared from Pistacia Shells

1997 ◽  
Vol 15 (6) ◽  
pp. 419-427 ◽  
Author(s):  
M.A. Hourieh ◽  
M.N. Alaya ◽  
A.M. Youssef

A series of activated carbons ‘Z’ was prepared from Aleppo Pistacia Vera shells using different percentages of zinc chloride at 873 K in the absence of air. Another series ‘ZN’ was prepared using the same conditions as for the ‘Z’ series but employing a nitrogen atmosphere to effect carbonization. The textural properties of the two series of samples were determined from the adsorption of carbon dioxide and methylene blue at 298 K. Activated carbons with a high adsorptive capacity for methylene blue were obtained. Activation with zinc chloride proceeded with increasing microporosity via the creation of new micropores. At high percentages of zinc chloride, slight partial pore widening may take place. Carbon dioxide was accessible to the entire pore system and was therefore suitable as a probe for the investigation of the textural properties of the activated carbons studied. A fraction of the porosity was inaccessible to methylene blue molecules and consequently lower surface areas were calculated from the adsorption of this dye molecule.

1997 ◽  
Vol 15 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Th. El-Nabarawy ◽  
M.R. Mostafa ◽  
A.M. Youssef

Non-activated carbon ‘A’, physically-activated carbons P1–P4, zinc chloride-activated carbons Z1–Z4 and potassium sulphide-activated carbons K1–K4 were prepared from Maghara coal (Sinai, Egypt). The surface areas of these carbons were determined by investigating the adsorption of carbon dioxide at 298 K and of nitrogen at 77 K. The decolourization powers of the carbons were determined from methylene blue adsorption at 308 K. The adsorption of methanol, benzene, n-hexane, n-octane and α-pinene at 308 K was also determined using equilibrium and flow techniques. The removal of ammonia and phenol from water was investigated on some selected samples. The activated carbons showed high capacities towards the removal of organic pollutants from water and from gas streams via adsorption. Their capacity towards a particular pollutant depends on the method of activation and is related to the textural and/or the chemistry of the carbon surface.


1997 ◽  
Vol 15 (10) ◽  
pp. 803-814 ◽  
Author(s):  
A.M. Youssef ◽  
M.R. Mostafa ◽  
E.M. Dorgham

Zinc chloride-activated carbons and steam-activated carbons were prepared from Maghara coal. The textural properties were determined from low-temperature nitrogen adsorption. Zinc chloride activation is usually associated with the creation of new micropores while steam activation involves pore widening particularly when the percentage burn-off is high. The adsorption of SO2 on steam-activated carbon is high compared with ZnCl2-activated carbons. Steam activation develops surface basic groups which provide chemisorption sites for SO2. The adsorption of SO2 is enhanced in the presence of O2 and water vapour and involves the formation of sulphuric acid in this case. Sulphur dioxide adsorption is related to the chemistry of the carbon surface rather than to the extent of the surface area of the activated carbon.


2017 ◽  
Vol 19 (2) ◽  
pp. 44-50 ◽  
Author(s):  
Jarosław Serafin

Abstract The objective of this work was preparation of activated carbon from spent dregs for carbon dioxide adsorption. A saturated solution of KOH was used as an activating agent. Samples were carbonized in the furnace at the temperature of 550°C. Textural properties of activated carbons were obtained based on the adsorption-desorption isotherms of nitrogen at −196°C and carbon dioxide at 0°C. The specific surface areas of activated carbons were calculated by the Brunauer – Emmett – Teller equation. The volumes of micropores were obtained by density functional theory method. The highest CO2 adsorption was 9.54 mmol/cm3 at 0°C – and 8.50 mmol/cm3 at 25°C.


1994 ◽  
Vol 11 (4) ◽  
pp. 225-233 ◽  
Author(s):  
A.M. Youssef ◽  
M.N. Alaya ◽  
N. Nawar

Non-activated carbon has been prepared by carbonizing waste products manufactured from phenol formaldehyde at 1073 K in a nitrogen atmosphere. Activated carbons were obtained by gasifying the non-activated product with air at 673 K, or with steam at 1173 K, to different levels of burn-off. The adsorption of nitrogen at 77 K and of carbon dioxide at 298 K was measured for all the carbons prepared using volumetric apparatus. The adsorption of iso-octane and α-pinene at 320 K was carried out gravimetrically using silica spring balances. The adsorption of methylene blue and of phenol from their aqueous solutions was determined spectrophotometrically. The adsorption of ammonia from its aqueous solution at 308 K was determined colorimetrically. The surface area of the activated carbons increased with increasing percentage burn-off to reach a maximum and then decreased with further increase in percentage burn-off. Gasification with oxidizing gases changed the porosity of the carbon with the change depending on the extent of gasification. The adsorption of iso-octane and α-pinene increased with increasing percentage burn-off as a result of pore widening. The low burn-off carbons obtained from phenol formaldehyde wastes are characterized by extremely high surface areas and microporosity, and a high CO/CO2 ratio on outgassing. The carbons exhibit high phenol adsorption capacities. Ammonia adsorption is favoured on carbons of a low CO/CO2 ratio.


2018 ◽  
Vol 28 (4) ◽  
pp. 157-161 ◽  
Author(s):  
Kazumasa SATO ◽  
Muhammad Abbas Ahmad ZAINI ◽  
Yoshimasa AMANO ◽  
Motoi MACHIDA

2019 ◽  
Vol 268 ◽  
pp. 04006
Author(s):  
Janssen Radley Peñaflor ◽  
Airic James Carillo ◽  
Samuel Elijah Estrada ◽  
Jhulimar Celedonio-Castro

Adsorption process both in post carbon dioxide capture and wastewater treatment has been receiving widespread attention over the past decades as a mitigating technology for climate change and water pollution, respectively. With this increasing interest in adsorption processes to address environmental concerns, development of an adsorbent with not just high adsorptive capacity but which is also low cost is of great interest among researchers. In this study, an agricultural waste which was already utilized as a boiler fuel in a paper industry was investigated for its potential as an adsorbent for both carbon dioxide capture and wastewater treatment. Specifically, the CO2 and methylene blue adsorption capacity of carbon residue from rice husk used as boiler fuel was determined and was compared with a biochar synthesized from rice husk. Furthermore, Scanning Electron Microscope (SEM) and Thermogravimetric analysis (TGA) were used for the characterization of the adsorbents. Results showed that the carbon residue can be a potential adsorbent for both applications with about 0.5 wt% CO2 adsorption and 100% removal of the methylene blue.


1995 ◽  
Vol 12 (3) ◽  
pp. 247-258 ◽  
Author(s):  
C. Nguyen ◽  
A. Ahmadpour ◽  
D.D. Do

Activated carbon was prepared from nut shells using a conventional two-stage method: carbonization followed by activation. Activation with steam or carbon dioxide as activating agent produced a range of chars of different burn-off. These were characterized for their total and micropore surface areas, and benzene adsorption capacity. Benzene adsorption measurement provided an insight into the effect of porosity development on the adsorptive properties of the adsorbent. It was found that activated carbon products from nut shells were comparable, in terms of adsorption characteristics, with activated carbons from other lignocellulosic precursors. The evolution of porosity of the resulting carbons shows that carbon dioxide is the preferable agent for the production of activated carbon with a narrow micropore size distribution.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3136 ◽  
Author(s):  
Deneb Peredo-Mancilla ◽  
Imen Ghouma ◽  
Cecile Hort ◽  
Camelia Matei Ghimbeu ◽  
Mejdi Jeguirim ◽  
...  

The aim of the present work is to study the effect of different activation methods for the production of a biomass-based activated carbon on the CO 2 and CH 4 adsorption. The influence of the activation method on the adsorption uptake was studied using three activated carbons obtained by different activation methods (H 3 PO 4 chemical activation and H 2 O and CO 2 physical activation) of olive stones. Methane and carbon dioxide pure gas adsorption experiments were carried out at two working temperatures (303.15 and 323.15 K). The influence of the activation method on the adsorption uptake was studied in terms of both textural properties and surface chemistry. For the three adsorbents, the CO 2 adsorption was more important than that of CH 4 . The chemically-activated carbon presented a higher specific surface area and micropore volume, which led to a higher adsorption capacity of both CO 2 and CH 4 . For methane adsorption, the presence of mesopores facilitated the diffusion of the gas molecules into the micropores. In the case of carbon dioxide adsorption, the presence of more oxygen groups on the water vapor-activated carbon enhanced its adsorption capacity.


1997 ◽  
Vol 15 (9) ◽  
pp. 707-715 ◽  
Author(s):  
Amina A. Attia

A non-activated carbon ‘D’ was obtained by carbonizing date pits at 773 K in a limited supply of air. Activated carbons were obtained by gasifying portions of ‘D’ with air at 773 K, carbon dioxide at 1123 K, or steam at 1173 K, all to different burn-offs between 15% and 60%. The adsorption of nitrogen at 77 K and of carbon dioxide at 298 K was investigated using a volumetric adsorption apparatus of a conventional type. The adsorption of water vapour at 298 K and the chemisorption of pyridine at 423 K was followed by means of quartz spring balances. Gasification with oxidizing gases increased the surface area and total pore volume, as measured by nitrogen or carbon dioxide adsorption. In most cases, comparable surface areas were measured by nitrogen and carbon dioxide. The adsorption of water vapour depended on the percentage burn-off and the gasification conditions. Chemisorption of pyridine at 423 K was found to be related to the chemistry of the surface rather than to the surface area or total pore volume.


2013 ◽  
Vol 545 ◽  
pp. 129-133 ◽  
Author(s):  
Athiwat Sirimuangjinda ◽  
Khanthima Hemra ◽  
Duangduen Atong ◽  
Chiravoot Pechyen

Activated carbons were prepared by chemical activation from scrap tire with two chemical reagents, NaOH and KOH. The activation consisted of different impregnation of a reagent followed by carbonization in nitrogen at 700°C. The resultant activated carbons were characterized in terms of BET surface area, methylene blue adsorption and iodine number. The influence of each parameter of the synthesis on the properties of the activated carbons was discussed, and the action of each hydroxide was methodically compared. It is the first time that preparation parameters and pore texture characteristics are simultaneously considered for two closely related activating agents of the same char precursor. Whatever the preparation conditions, it was shown that KOH led to the most microporous materials, having surface areas and adsorption properties (methylene blue adsorption and iodine number) higher than those obtained with NaOH, which was in agreement with some early works. However, the surface areas, methylene blue adsorption and iodine number obtained in the present study were much higher than in previous studies, up to 951 m2/g, 510 mg/g and 752 mg/g, respectively, using scrap tire waste char:KOH equal to 1:1. The thorough study of the way each preparation parameter influenced the properties of the final materials bought insight into the activation mechanisms. Each time it was possible; the results of scrap tire waste chemically activated with hydroxides were compared with those obtained with anthracites; explanations of similarities and differences were systematically looked for.


Sign in / Sign up

Export Citation Format

Share Document