scholarly journals Surface and Catalytic Properties of γ-Irradiated Cr2O3/Al2O3 Solids

1997 ◽  
Vol 15 (6) ◽  
pp. 465-476 ◽  
Author(s):  
G.A. El-Shobaky ◽  
A.M. Ghozza ◽  
G.M. Mohamed

Two samples of Cr2O3/Al2O3 were prepared by mixing a known mass of finely powdered Al(OH)3 with a calculated amount of CrO3 solid followed by drying at 120°C and calcination at 400°C. The amounts of chromium oxide employed were 5.66 and 20 mol% Cr2O3, respectively. The calcined solid specimens were then treated with different doses of γ-rays (20–160 Mrad). The surface and catalytic properties of the different irradiated solids were investigated using nitrogen adsorption at −196°C and the catalysis of CO oxidation by O2 at 300–400°C. The results revealed that γ-rays brought about a slight decrease in the BET surface area, SBET (15%), and in the total pore volume, Vp (20%), of the adsorbent containing 5.66 mol% Cr2O3. The same treatment increased the total pore volume, Vp (36%), and the mean pore radius, r̄ (43%), of the other adsorbent sample without changing its BET surface area. The catalytic activities of both catalyst samples were found to increase as a function of dose, reaching a maximum value at 80–160 Mrad and 40 Mrad for the solids containing 5.66 and 20 mol% Cr2O3, respectively. The maximum increase in the catalytic activity measured at 300°C was 59% and 100% for the first and second catalyst samples, respectively. The induced effect of γ-irradiation on the catalytic activity was an increase in the concentration of catalytically active sites taking part in chemisorption and in the catalysis of CO oxidation by O2 without changing their energetic nature. This was achieved by a progressive removal of surface hydroxy groups during the irradiation process.

2017 ◽  
Vol 11 (5) ◽  
pp. 47 ◽  
Author(s):  
Heman A. Smail ◽  
Kafia M. Shareef ◽  
Zainab H. Ramli

The adsorption of lead (Pb II) ion on different types of synthesized zeolite was investigated. The BET surface area, total pore volume & average pore size distribution of these synthesized zeolites were determined by adsorption isotherms for N2, the surface area & total pore volume of their sources were found by adsorption isothermN2.The adsorption equilibrium was measured after 24h at room temperature (RT) & concentration 10mg.L-1 of Pb (II) was used. The adsorption of heavy metal Pb (II) on four different prepared zeolites (LTA from Montmorillonite clay, FAU(Y)-B.H (G2) from Barley husk, Mordenite (G1) from Chert rock, FAU(X)-S.C (G3) from shale clay & modified Shale clay by oxalic acid (N1) & sodium hydroxide (N2)), were compared with the adsorption of their sources by using static batch experimental method. The major factors affecting the heavy metal ion sorption on different synthesized zeolites & their sources were investigated. The adsorption equilibrium capacity (Qm) of Pb (II) ion for different synthesized zeolites ordered from (N1>N2>LTA>G3>G2>G1&for their sources ordered Shale clay >Montmorilonite> Barley husk>Chert rock. The atomic absorption spectrometry was used for analysis of lead heavy metal ion, the obtained results in this study showed that the different synthesized zeolites were efficient ion exchanges for removing heavy metal, in particular, the modified zeolite from shale clay by oxalic acid.


Author(s):  
K. S. Hui ◽  
Christopher Y. H. Chao ◽  
C. W. Kwong ◽  
M. P. Wan

This study investigated the performance of multi-transition metal (Cu, Cr, Ni and Co) ions exchanged zeolite 13X catalysts on methane emission abatement, especially at methane level of the exhaust from natural gas fueled vehicles. Catalytic activity of methane combustion using multi-ions exchanged catalyst was studied under different parameters: mole % of metal loading, inlet velocity and inlet methane concentration at atmospheric pressure and 500 °C. Performance of the catalysts was investigated and explained in terms of the apparent activation energy, number of active sites and BET surface area of the catalyst. This study showed that the multi-ions exchanged catalyst outperformed the single-ions exchanged and the acidified 13X catalysts. Lengthening the residence time could also lead to higher methane conversion %. Catalytic activity of the catalysts was influenced by the mole % of metal loading which played important roles in affecting the apparent activation energy of methane combustion, active sites and also the BET surface area of the catalyst. Increasing mole % of metal loading in the catalyst decreased the apparent activation energy for methane combustion and also the BET surface area of the catalyst. In view of these, there existed an optimized mole % of metal loading where the highest catalytic activity was observed.


2019 ◽  
Vol 2 (3) ◽  
pp. 1205-1209
Author(s):  
Hasan Sayğılı

The influence of carbonization temperature (CT) on pore properties of the prepared activated carbon using lentil processing waste product (LWP) impregnated with potassium carbonate was studied. Activated carbons (ACs) were obtained by impregnation with 3:1 ratio (w/w) K2CO3/LWP under different carbonization temperatures at 600, 700, 800 and 900 oC for 1h. Activation at low temperature represented that micropores were developed first and then mesoporosity developed, enhanced up to 800 oC and then started to decrease due to possible shrinking of pores. The optimum temperature for LWP was found to be around 800 oC on the basis of total pore volume and the Brunauer-Emmett-Teller (BET) surface area. The optimum LWPAC sample was found with a CT of 800 oC, which gives the highest BET surface area and pore volume of 1875 m2/g and 0.995 cm3/g, respectively.


2018 ◽  
Vol 34 (5) ◽  
pp. 2661-2666
Author(s):  
Sadiq A. Karim

Condensation polymerisation technique has been employed to synthesise a Novel Tröger base polymer with thermal stability and microporosity. The synthesis process starts with alkylating anthracene, then nitrating and reducing this to produce the monomer. A Tröger base polymer is obtained by polymerising the monomer to afford a white polymer with good solubility into dichloromethane and chloroform, good thermal stability to ~377oC and a good BET surface area of 368.6 m2/g with a total pore volume of 0.4166 ml/g.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2928
Author(s):  
Naushad Ahmad ◽  
Fahad Alharthi ◽  
Manawwer Alam ◽  
Rizwan Wahab ◽  
Salim Manoharadas ◽  
...  

The development of a transition-metal-based catalyst with concomitant high activity and stability due to its distinguishing characteristics, yielding an abundance of active sites, is considered to be the bottleneck for the dry reforming of methane (DRM). This work presents the catalytic activity and durability of SrNiO3 and CeNiO3 perovskites for syngas production via DRM. CeNiO3 exhibits a higher specific surface area, pore volume, number of reducible species, and nickel dispersion when compared to SrNiO3. The catalytic activity results demonstrate higher CH4 (54.3%) and CO2 (64.8%) conversions for CeNiO3, compared to 22% (CH4 conversion) and 34.7% (CO2 conversion) for SrNiO3. The decrease in catalytic activity after replacing cerium with strontium is attributed to a decrease in specific surface area and pore volume, and nickel active sites covered with strontium carbonate. The stability results reveal the deactivation of both the catalysts (SrNiO3 and CeNiO3) but SrNiO3 showed more deactivation than CeNiO3, as demonstrated by deactivation factors. The catalyst deactivation is mainly attributed to carbon deposition and these findings are verified by characterizing the spent catalysts.


2002 ◽  
Vol 20 (10) ◽  
pp. 1037-1049 ◽  
Author(s):  
G.A. El-Shobaky ◽  
S.A. El-Molla ◽  
S.A. Ismail

The effects of γ-rays (20–160 Mrad) on the surface and catalytic properties of two Co3O4/MgO systems were investigated. The formulae of the investigated solids were 0.05Co3O4/MgO and 0.2Co3O4/MgO, respectively, both prepared by the impregnation method and calcined at 500°C. The irradiated samples were left for one year in sealed tubes before any measurements were undertaken. γ-Irradiation of the investigated solids resulted in a progressive decrease in the particle size of the Co3O4 and MgO phases. This treatment also led to a measurable increase in the specific surface area of the treated solids to an extent proportional to the γ-ray dosage. Treatment of the Co3O4/MgO system with different doses of γ-rays brought about a significant increase in the catalytic activity expressed both as the reaction rate constant and as the reaction rate constant per unit surface area. However, the curve relating to the catalytic activity and dosage of γ-rays showed maxima located at 40 and 80 Mrad for samples having the formula 0.05Co3O4/MgO and 0.2Co3O4/MgO, respectively. Furthermore, samples exposed to 160 Mrad showed a larger catalytic activity than the unirradiated samples. The results demonstrate the role of γ-rays in inhibiting the deterioration of the catalytic activity of the investigated systems as a function of aging time. The irradiation process did not modify the activation energy of the catalyzed reaction but altered the concentration of active centres on the surfaces of the solids without changing their energetic nature.


2013 ◽  
Vol 773 ◽  
pp. 601-605 ◽  
Author(s):  
Zhi Jun Zhao ◽  
Ruo Yu Wang ◽  
Qian Long Zhao ◽  
En Peng Wang ◽  
Hai Quan Su ◽  
...  

The CuO/CeO2and CuO/PrO2-CeO2catalysts were prepared by the hydrothermal method, and characterized via XRD, SEM and N2adsorption-desorption techniques. The study shows that the BET surface area and pore volume of the CuO/PrO2-CeO2catalysts increase with the increase of praseodymium content. The CuO/CeO2catalyst presents higher catalytic activity in compare with the CuO/PrO2-CeO2catalysts although the addition of praseodymium promotes textural properties of the CuO/CeO2catalysts, and it proves that the interaction of CuO and CeO2has a crucial role in CO-PROX.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 588 ◽  
Author(s):  
Giorgio Gatti ◽  
Mina Errahali ◽  
Lorenzo Tei ◽  
Maurizio Cossi ◽  
Leonardo Marchese

The preparation of porous carbons by post-synthesis treatment of hypercrosslinked polymers is described, with a careful physico-chemical characterization, to obtain new materials for gas storage and separation. Different procedures, based on chemical and thermal activations, are considered; they include thermal treatment at 380 °C, and chemical activation with KOH followed by thermal treatment at 750 or 800 °C; the resulting materials are carefully characterized in their structural and textural properties. The thermal treatment at temperature below decomposition (380 °C) maintains the polymer structure, removing the side-products of the polymerization entrapped in the pores and improving the textural properties. On the other hand, the carbonization leads to a different material, enhancing both surface area and total pore volume—the textural properties of the final porous carbons are affected by the activation procedure and by the starting polymer. Different chemical activation methods and temperatures lead to different carbons with BET surface area ranging between 2318 and 2975 m2/g and pore volume up to 1.30 cc/g. The wise choice of the carbonization treatment allows the final textural properties to be finely tuned by increasing either the narrow pore fraction or the micro- and mesoporous volume. High pressure gas adsorption measurements of methane, hydrogen, and carbon dioxide of the most promising material are investigated, and the storage capacity for methane is measured and discussed.


2009 ◽  
Vol 79-82 ◽  
pp. 1907-1910
Author(s):  
Zhi Gang Xie

Porous activated carbon was prepared from orange wastes using zinc chloride as an activating agent by one-step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on pore characteristics of activated carbon were studied. The porous structures of the orange wastes activated carbon were investigated by BET, D-R equations, BJH equations and Kelvin theory. The morphology was observed using transmission electron microscopy (TEM). The mesoporous activated carbon is gained when the impregnation ratio is 3:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has total pore volume 2.098 cm3/g, mesoporous pore volume 1.438 cm3/g, with a high BET surface area 1476m2/g. The pore distribution of the mesoporous activated carbon is very concentrative, with average pore diameter of 3.88nm. While, the high specific surface area activated carbon is gained when the impregnation ratio is 2:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has high BET surface area 1909 m2/g, while the total pore volume is only 1.448cm3/g and microporous pore volume is 0.889cm3/g, with average pore diameter of 2.29 nm.


Sign in / Sign up

Export Citation Format

Share Document