scholarly journals Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury

2015 ◽  
Vol 36 (6) ◽  
pp. 1059-1074 ◽  
Author(s):  
Xiaoning Han ◽  
Xi Lan ◽  
Qiang Li ◽  
Yufeng Gao ◽  
Wei Zhu ◽  
...  

Prostaglandin E2 EP3 receptor is the only prostaglandin E2 receptor that couples to multiple G-proteins, but its role in thrombin-induced brain injury is unclear. In the present study, we exposed mouse hippocampal slice cultures to thrombin in vitro and injected mice with intrastriatal thrombin in vivo to investigate the role of EP3 receptor in thrombin-induced brain injury and explore its underlying cellular and molecular mechanisms. In vitro, EP3 receptor inhibition reduced thrombin-induced hippocampal CA1 cell death. In vivo, EP3 receptor was expressed in astrocytes and microglia in the perilesional region. EP3 receptor inhibition reduced lesion volume, neurologic deficit, cell death, matrix metalloproteinase-9 activity, neutrophil infiltration, and the number of CD68+ microglia, but increased the number of Ym-1+ M2 microglia. RhoA-Rho kinase levels were increased after thrombin injection and were decreased by EP3 receptor inhibition. In mice that received an intrastriatal injection of autologous arterial blood, inhibition of thrombin activity with hirudin decreased RhoA expression compared with that in vehicle-treated mice. However, EP3 receptor activation reversed this effect of hirudin. These findings show that prostaglandin E2 EP3 receptor contributes to thrombin-induced brain damage via Rho-Rho kinase–mediated cytotoxicity and proinflammatory responses.

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Liang Xiao ◽  
Hana A Itani ◽  
Maria P Kraemer ◽  
Richard M Breyer ◽  
David G Harrison

We recently identified a pathway underlying immune activation in hypertension. Proteins oxidatively modified by reactive γ-ketoaldehydes (isoketals) accumulate in dendritic cells (DCs). These are immunogenic and lead to subsequent T lymphocytes activation. The local signals that stimulate DCs to accumulate isoketal adducts remain undefined. Prostaglandin E 2 (PGE 2 ) has been implicated in the inflammation associated with hypertension. We hypothesized that PGE 2 via its EP3 receptor contributes to DC activation in hypertension. EP3 -/- mice and wild type (WT) littermates were exposed to sequential hypertensive stimuli involving an initial 2-week exposure to the NOS inhibitor L-NAME (LN) in drinking water, a 2 week washout period, and a subsequent 4% high salt diet (HS) for 3 weeks. In WT mice, this protocol increased systolic pressure from 123±2 to 148±8 mmHg (p<0.05), and renal CD4 + and CD8 + effector memory T cells by 2 to 3 fold. This was associated with a striking accumulation of isoketal protein adducts in splenic DCs. However, the increases in blood pressure, renal T cell infiltration and DC isoketal formation were completely prevented in EP3 -/- mice. We further hypothesized that EP3 receptors contribute to oxidative stress production in the kidney. As measured by dihydroethidium with confocal microscopy, the LNHS protocol induced marked increases in superoxide production in WT mice, but not in EP3 -/- mice. To examine the direct effects of PGE 2 , splenic DCs were incubated with PGE 2 in vitro for 24 hours. PGE 2 dose-dependently increased isoketal-adduct formation in DCs (vehicle: 8.8±5.1% vs. 50 nM PGE 2 : 41.4±11.7%, p<0.05). Interestingly, this effect was not blocked by the EP3 receptor antagonist DG-041 (30 nM), but was completely prevented by the EP1 receptor blocker SC-51322 (20 μM). These data indicate both direct and indirect roles of PGE 2 in DC activation in hypertension. In vivo, PGE 2 has a predominant effect on EP3 receptors to enhance renal vascular ROS production, which likely leads to isoketal-adduct formation and accumulation in DCs. PGE 2 also acts directly on DCs via its EP1 receptors to stimulate intracellular isoketal formation. Together, these findings provide additional information as to how PGE 2 modulates inflammation in hypertension.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhongyuan Bao ◽  
Yinlong Liu ◽  
Binglin Chen ◽  
Zong Miao ◽  
Yiming Tu ◽  
...  

AbstractProkineticin-2 (Prok2) is an important secreted protein likely involved in the pathogenesis of several acute and chronic neurological diseases through currently unidentified regulatory mechanisms. The initial mechanical injury of neurons by traumatic brain injury triggers multiple secondary responses including various cell death programs. One of these is ferroptosis, which is associated with dysregulation of iron and thiols and culminates in fatal lipid peroxidation. Here, we explore the regulatory role of Prok2 in neuronal ferroptosis in vitro and in vivo. We show that Prok2 prevents neuronal cell death by suppressing the biosynthesis of lipid peroxidation substrates, arachidonic acid-phospholipids, via accelerated F-box only protein 10 (Fbxo10)-driven ubiquitination, degradation of long-chain-fatty-acid-CoA ligase 4 (Acsl4), and inhibition of lipid peroxidation. Mice injected with adeno-associated virus-Prok2 before controlled cortical impact injury show reduced neuronal degeneration and improved motor and cognitive functions, which could be inhibited by Fbxo10 knockdown. Our study shows that Prok2 mediates neuronal cell deaths in traumatic brain injury via ferroptosis.


2021 ◽  
Vol 22 (21) ◽  
pp. 11395
Author(s):  
So Yoon Ahn ◽  
Dong Kyung Sung ◽  
Yun Sil Chang ◽  
Se In Sung ◽  
Young Eun Kim ◽  
...  

We investigated whether irradiated brain-derived neurotropic factor (BDNF)-overexpressing engineered human mesenchymal stem cells (BDNF-eMSCs) improve paracrine efficiency and, thus, the beneficial potency of naïve MSCs against severe hypoxic ischemic (HI) brain injury in newborn rats. Irradiated BDNF-eMSCs hyper-secreted BDNF > 10 fold and were >5 fold more effective than naïve MSCs in attenuating the oxygen-glucose deprivation-induced increase in cytotoxicity, oxidative stress, and cell death in vitro. Only the irradiated BDNF-eMSCs, but not naïve MSCs, showed significant attenuating effects on severe neonatal HI-induced short-term brain injury scores, long-term progress of brain infarct, increased apoptotic cell death, astrogliosis and inflammatory responses, and impaired negative geotaxis and rotarod tests in vivo. Our data, showing better paracrine potency and the resultant better therapeutic efficacy of the irradiated BDNF-eMSCs, compared to naïve MSCs, suggest that MSCs transfected with the BDNF gene might represent a better, new therapeutic strategy against severe neonatal HI brain injury.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246375
Author(s):  
Xiuping Gao ◽  
Jianguo Zhuang ◽  
Lei Zhao ◽  
Wan Wei ◽  
Fadi Xu

Prostaglandin E2 (PGE2)-induced coughs in vivo and vagal nerve depolarization in vitro are inhibited by systemic and local administration of prostaglandin EP3 receptor (L-798106) and TRPV1 antagonists (JNJ 17203212). These results indicate a modulating effect of TRPV1 on the EP3 receptor-mediated cough responses to PGE2 likely through the vagal sensory nerve. This study aimed to determine whether 1) inhalation of aerosolized JNJ 17203212 and L-798106 affected cough responses to citric acid (CA, mainly stimulating TRPV1) and PGE2; 2) TRPV1 and EP3 receptor morphologically are co-expressed and electrophysiologically functioned in the individual of vagal pulmonary C-neurons (cell bodies of bronchopulmonary C-fibers in the nodose/jugular ganglia); and 3) there was a cross-effect of TRPV1 and EP3 receptor on these neural excitations. To this end, aerosolized CA or PGE2 was inhaled by unanesthetized guinea pigs pretreated without or with each antagonist given in aerosol form. Immunofluorescence was applied to identify the co-expression of TRPV1 and EP3 receptor in vagal pulmonary C-neurons (retrogradely traced by DiI). Whole-cell voltage patch clamp approach was used to detect capsaicin (CAP)- and PGE2-induced currents in individual vagal pulmonary C-neurons and determine the effects of the TRPV1 and EP3 receptor antagonists on the evoked currents. We found that PGE2-induced cough was attenuated by JNJ 17203212 or L-798106 and CA-evoked cough greatly suppressed only by JNJ 17203212. Approximately 1/4 of vagal pulmonary C-neurons co-expressed EP3 with a cell size < 20 μm. Both CAP- and PGE2-induced currents could be recorded in the individuals of some vagal pulmonary C-neurons. The former was largely inhibited only by JNJ 17203212, while the latter was suppressed by JNJ 17203212 or L-798106. The similarity of the cross-effect of both antagonists on cough and vagal pulmonary C-neural activity suggests that a subgroup of vagal pulmonary C-neurons co-expressing TRPV1 and EP3 receptor is, at least in part, responsible for the cough response to PGE2.


2021 ◽  
Author(s):  
Richard Bergeron ◽  
Julia Cappelli ◽  
Pamela Khacho ◽  
Boyang Wang ◽  
Alexandra Sokolovski ◽  
...  

Abstract Glycine fulfills several roles in biology including protein synthesis, inhibitory transmission via glycine receptor activation and excitatory transmission through glutamate-sensitive N-methyl-D-aspartate receptors (NMDARs). Low glycine doses enhance NMDAR function while high doses trigger glycine-induced NMDAR internalization (GINI) in vitro. The physiological relevance of GINI has been questioned given that the high-affinity glycine transporter type 1 (GlyT1), located on astrocytes and neurons, maintains synaptic glycine concentrations far below the level that would saturate the glycine binding site (GBS) on NMDARs. Here, we report evidence that GINI occurs also in vivo and is neuroprotective following ischemic insult. Mice pre-treated with a GlyT1 antagonist (GlyT1-A), which increased glycine levels, exhibited smaller stroke volume, reduced cell death, and minimized behavioural deficits following stroke induction by either photothrombosis or endothelin-1. We demonstrate that in a modified in vitro ischemic paradigm, glycine is released at levels surpassing what occurs during ischemia alone. Therefore, glycine accumulates in the synaptic cleft, enhances occupancy of GBS and reaches the set point to trigger GINI. We report that GINI is observed during stroke, in vivo, only in the presence of a GlyT1-A. Moreover, we show evidence of a protective effect on the vasculature in the peri-infarct area. Therefore, these data strongly suggest that GlyT1 is a therapeutic target to prevent cell death following an ischemic event.


2009 ◽  
Vol 106 (17) ◽  
pp. 7233-7238 ◽  
Author(s):  
Jeremy O. Jones ◽  
Eric C. Bolton ◽  
Yong Huang ◽  
Clementine Feau ◽  
R. Kiplin Guy ◽  
...  

Androgen receptor (AR) inhibitors are used to treat multiple human diseases, including hirsutism, benign prostatic hypertrophy, and prostate cancer, but all available anti-androgens target only ligand binding, either by reduction of available hormone or by competitive antagonism. New strategies are needed, and could have an important impact on therapy. One approach could be to target other cellular mechanisms required for receptor activation. In prior work, we used a cell-based assay of AR conformation change to identify non-ligand inhibitors of AR activity. Here, we characterize 2 compounds identified in this screen: pyrvinium pamoate, a Food and Drug Administration-approved drug, and harmol hydrochloride, a natural product. Each compound functions by a unique, non-competitive mechanism and synergizes with competitive antagonists to disrupt AR activity. Harmol blocks DNA occupancy by AR, whereas pyrvinium does not. Pyrvinium inhibits AR-dependent gene expression in the prostate gland in vivo, and induces prostate atrophy. These results highlight new therapeutic strategies to inhibit AR activity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Roland Imle ◽  
Bei-Tzu Wang ◽  
Nicolas Stützenberger ◽  
Jana Birkenhagen ◽  
Amol Tandon ◽  
...  

Abstract Modulation of energy metabolism to a highly glycolytic phenotype, i.e. Warburg effect, is a common phenotype of cancer and activated immune cells allowing increased biomass-production for proliferation and cell division. Endoplasmic reticulum (ER)-localized ADP-dependent glucokinase (ADPGK) has been shown to play a critical role in T cell receptor activation-induced remodeling of energy metabolism, however the underlying mechanisms remain unclear. Therefore, we established and characterized in vitro and in vivo models for ADPGK-deficiency using Jurkat T cells and zebrafish. Upon activation, ADPGK knockout Jurkat T cells displayed increased cell death and ER stress. The increase in cell death resulted from a metabolic catastrophe and knockout cells displayed severely disturbed energy metabolism hindering induction of Warburg phenotype. ADPGK knockdown in zebrafish embryos led to short, dorsalized body axis induced by elevated apoptosis. ADPGK hypomorphic zebrafish further displayed dysfunctional glucose metabolism. In both model systems loss of ADPGK function led to defective N- and O-glycosylation. Overall, our data illustrate that ADPGK is part of a glucose sensing system in the ER modulating metabolism via regulation of N- and O-glycosylation.


2021 ◽  
Author(s):  
Richard Bergeron ◽  
Julia Cappelli ◽  
Pamela Khacho ◽  
Boyang Wang ◽  
Alexandra Sokolovski ◽  
...  

Abstract Glycine fulfills several roles in biology including protein synthesis, inhibitory transmission via glycine receptor activation and excitatory transmission through glutamate-sensitive N-methyl-D-aspartate receptors (NMDARs). Low glycine doses enhance NMDAR function while high doses trigger glycine-induced NMDAR internalization (GINI) in vitro. The physiological relevance of GINI has been questioned given that the high-affinity glycine transporter type 1 (GlyT1), located on astrocytes and neurons, maintains synaptic glycine concentrations far below the level that would saturate the glycine binding site (GBS) on NMDARs. Here, we report evidence that GINI occurs also in vivo and is neuroprotective following ischemic insult. Mice pre-treated with a GlyT1 antagonist (GlyT1-A), which increased glycine levels, exhibited smaller stroke volume, reduced cell death, and minimized behavioural deficits following stroke induction by either photothrombosis or endothelin-1. We demonstrate that in a modified in vitro ischemic paradigm, glycine is released at levels surpassing what occurs during ischemia alone. Therefore, glycine accumulates in the synaptic cleft, enhances occupancy of GBS and reaches the set point to trigger GINI. We report that GINI is observed during stroke, in vivo, only in the presence of a GlyT1-A. Moreover, we show evidence of a protective effect on the vasculature in the peri-infarct area. Therefore, these data strongly suggest that GlyT1 is a therapeutic target to prevent cell death following an ischemic event.


Sign in / Sign up

Export Citation Format

Share Document