Assessing Interventions That Prevent Multiple Infectious Diseases: Simple Methods for Multidisease Modeling

2021 ◽  
pp. 0272989X2110332
Author(s):  
Anneke L. Claypool ◽  
Jeremy D. Goldhaber-Fiebert ◽  
Margaret L. Brandeau

Background Many cost-effectiveness analyses (CEAs) only consider outcomes for a single disease when comparing interventions that prevent or treat 1 disease (e.g., vaccination) to interventions that prevent or treat multiple diseases (e.g., vector control to prevent mosquito-borne diseases). An intervention targeted to a single disease may be preferred to a broader intervention in a single-disease model, but this conclusion might change if outcomes from the additional diseases were included. However, multidisease models are often complex and difficult to construct. Methods We present conditions for when multiple diseases should be considered in such a CEA. We propose methods for estimating health outcomes and costs associated with control of additional diseases using parallel single-disease models. Parallel modeling can incorporate competing mortality and coinfection from multiple diseases while maintaining model simplicity. We illustrate our approach with a CEA that compares a dengue vaccine, a chikungunya vaccine, and mosquito control via insecticide and mosquito nets, which can prevent dengue, chikungunya, Zika, and yellow fever. Results The parallel models and the multidisease model generated similar estimates of disease incidence and deaths with much less complexity. When using this method in our case study, considering only chikungunya and dengue, the preferred strategy was insecticide. A broader strategy—insecticide plus long-lasting insecticide-treated nets—was not preferred when Zika and yellow fever were included, suggesting the conclusion is robust even without the explicit inclusion of all affected diseases. Limitations Parallel modeling assumes independent probabilities of infection for each disease. Conclusions When multidisease effects are important, our parallel modeling method can be used to model multiple diseases accurately while avoiding additional complexity.

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 438
Author(s):  
Nathan H. Schumaker ◽  
Sydney M. Watkins

We selected the COVID-19 outbreak in the state of Oregon, USA as a system for developing a general geographically nuanced epidemiological forecasting model that balances simplicity, realism, and accessibility. Using the life history simulator HexSim, we inserted a mathematical SIRD disease model into a spatially explicit framework, creating a distributed array of linked compartment models. Our spatial model introduced few additional parameters, but casting the SIRD equations into a geographic setting significantly altered the system’s emergent dynamics. Relative to the non-spatial model, our simple spatial model better replicated the record of observed infection rates in Oregon. We also observed that estimates of vaccination efficacy drawn from the non-spatial model tended to be higher than those obtained from models that incorporate geographic variation. Our spatially explicit SIRD simulations of COVID-19 in Oregon suggest that modest additions of spatial complexity can bring considerable realism to a traditional disease model.


2018 ◽  
Vol 37 (11) ◽  
pp. 1190-1191 ◽  
Author(s):  
Margarita Cortés ◽  
Pio López ◽  
Viviana Márquez ◽  
Carlos Cortes ◽  
Elizabeth Toro ◽  
...  

2012 ◽  
Vol 10 (01) ◽  
pp. 1240007 ◽  
Author(s):  
CHENGCHENG SHEN ◽  
YING LIU

Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.


2021 ◽  
Vol 3 (2) ◽  
pp. 083-089
Author(s):  
Dalia Mustafa M. Elbashir ◽  
Mutaman AA Kehail ◽  
Yasir Mohamed Abdelrahim ◽  
Abdelmonem Eltiyab H Ali

Many measures have been used for mosquito control, including the elimination of breeding places, exclusion via window screens and mosquito nets in addition to natural products including clove (Syzygium aromaticum). This study was run at University of Gezira, Sudan, to run phytochemical and GC-MS screening for clove pods before used it as mosquito control agent. The standard methods, materials and devices were used to screen the phytochemical components and the chemical constituents (GC-MS). The WHO protocol for testing the susceptibility of mosquito’s larvae to insecticides was followed in bioassay. The aqueous and the ethanol extracts from clove pods were prepared and used against Anopheles, Culex and Aedes larvae. The results showed that, Aedes mosquito was relatively more susceptible (LC50= 498 mg/L) to clove aqueous extract than Anopheles (LC50= 561 mg/L) and Culex (LC50= 615 mg/L), and similar findings were observed for clove pods ethanol extract, which is relatively more potent than the aqueous extract. The biocidal activity can be attributed to the presence of the detected saponins, flavonoids, tannins and alkaloids. The GC-MS for the ethanol extract showed that, the principal compounds were Eugenol (81%) and caryophyllene (4.65%). Further studies should be run to improve knowledge about how to use this natural product in more economic trends.


Author(s):  
Iain Barrass ◽  
Joanna Leng

Since infectious diseases pose a significant risk to human health many countries aim to control their spread. Public health bodies faced with a disease threat must understand the disease’s progression and its transmission process. From this understanding it is possible to evaluate public health interventions intended to decrease impacts on the population. Commonly, contingency planning has been achieved through epidemiological studies and the use of relatively simple models. However, computational methods increasingly allow more complex, and potentially more realistic, simulations of various scenarios of the control of the spread of disease. However, understanding computational results from more sophisticated models can pose considerable challenges. A case study of a system combining a complex infectious disease model with interactive visualization and computational steering tools shows some of the opportunities this approach offers to infectious disease control.


2019 ◽  
Vol 221 (7) ◽  
pp. 1057-1069 ◽  
Author(s):  
Aaron Glass ◽  
Mark Polhemus ◽  
Dongliang Wang ◽  
Richard G Jarman ◽  
Stephen J Thomas ◽  
...  

Abstract Background Dengue is a global health problem requiring an effective, safe dengue vaccine. Methods We report the results of a phase II, randomized, open-label, single-center trial in adults aged 18 to 45 years in the United States designed to explore the effects of the Chimeric Yellow Fever Derived Tetravalent Dengue Vaccine (CYD-TDV, Dengvaxia) when administered on its designated schedule (months 0, 6, and 12) or on an accelerated dosing schedule (months 0, 2, and 6) and/or given before, or concomitantly with, a vaccine against Japanese encephalitis (JE). Results Based on dengue virus serotype-specific neutralizing antibody (NAb), the accelerated dosing schedule was comparable to the 0, 6, and 12-month schedule. Giving JE vaccine concurrently with CYD-TDV did not result in an increase in overall NAb titers. Immunophenotyping of peripheral blood mononuclear cells revealed an increase in activated CD8+ T cells after CYD-TDV vaccination, a phenomenon that was greatest for the JE vaccine primed. Conclusions We conclude that an accelerated dosing schedule of CYD-TDV results in essentially equivalent dengue serotype-specific NAb titers as the currently used schedule, and there may be an early benefit in antibody titers and activated CD8+ T cells by the administration of the JE vaccine before CYD-TDV vaccination.


2019 ◽  
Vol 156 (2) ◽  
pp. 477-490
Author(s):  
Hui Wang ◽  
Jorge Antonio Sanchez-Molina ◽  
Ming Li ◽  
Manuel Berenguel

2019 ◽  
Vol 93 (14) ◽  
Author(s):  
Lisa Miorin ◽  
Maudry Laurent-Rolle ◽  
Giuseppe Pisanelli ◽  
Pierre Hendrick Co ◽  
Randy A. Albrecht ◽  
...  

ABSTRACT The recent yellow fever virus (YFV) epidemic in Brazil in 2017 and Zika virus (ZIKV) epidemic in 2015 serve to remind us of the importance of flaviviruses as emerging human pathogens. With the current global flavivirus threat, there is an urgent need for antivirals and vaccines to curb the spread of these viruses. However, the lack of suitable animal models limits the research questions that can be answered. A common trait of all flaviviruses studied thus far is their ability to antagonize interferon (IFN) signaling so as to enhance viral replication and dissemination. Previously, we reported that YFV NS5 requires the presence of type I IFN (IFN-α/β) for its engagement with human signal transducer and activator of transcription 2 (hSTAT2). In this manuscript, we report that like the NS5 proteins of ZIKV and dengue virus (DENV), YFV NS5 protein is able to bind hSTAT2 but not murine STAT2 (mSTAT2). Contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, replacing mSTAT2 with hSTAT2 cannot rescue the YFV NS5-STAT2 interaction, as YFV NS5 is also unable to interact with hSTAT2 in murine cells. We show that the IFN-α/β-dependent ubiquitination of YFV NS5 that is required for STAT2 binding in human cells is absent in murine cells. In addition, we demonstrate that mSTAT2 restricts YFV replication in vivo. These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses. IMPORTANCE Flaviviruses such as yellow fever virus (YFV), Zika virus (ZIKV), and dengue virus (DENV) are important human pathogens. A common flavivirus trait is the antagonism of interferon (IFN) signaling to enhance viral replication and spread. We report that like ZIKV NS5 and DENV NS5, YFV NS5 binds human STAT2 (hSTAT2) but not mouse STAT2 (mSTAT2), a type I IFN (IFN-α/β) pathway component. Additionally, we show that contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, YFV NS5 is unable to interact with hSTAT2 in murine cells. We demonstrate that mSTAT2 restricts YFV replication in mice and that this correlates with a lack of IFN-α/β-induced YFV NS5 ubiquitination in murine cells. The lack of suitable animal models limits flavivirus pathogenesis, vaccine, and drug research. These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses.


2019 ◽  
Vol 39 (7) ◽  
pp. 842-856
Author(s):  
Ji-Hee Youn ◽  
Matt D. Stevenson ◽  
Praveen Thokala ◽  
Katherine Payne ◽  
Maria Goddard

Introduction. Individuals from older populations tend to have more than 1 health condition (multimorbidity). Current approaches to produce economic evidence for clinical guidelines using decision-analytic models typically use a single-disease approach, which may not appropriately reflect the competing risks within a population with multimorbidity. This study aims to demonstrate a proof-of-concept method of modeling multiple conditions in a single decision-analytic model to estimate the impact of multimorbidity on the cost-effectiveness of interventions. Methods. Multiple conditions were modeled within a single decision-analytic model by linking multiple single-disease models. Individual discrete event simulation models were developed to evaluate the cost-effectiveness of preventative interventions for a case study assuming a UK National Health Service perspective. The case study used 3 diseases (heart disease, Alzheimer’s disease, and osteoporosis) that were combined within a single linked model. The linked model, with and without correlations between diseases incorporated, simulated the general population aged 45 years and older to compare results in terms of lifetime costs and quality-adjusted life-years (QALYs). Results. The estimated incremental costs and QALYs for health care interventions differed when 3 diseases were modeled simultaneously (£840; 0.234 QALYs) compared with aggregated results from 3 single-disease models (£408; 0.280QALYs). With correlations between diseases additionally incorporated, both absolute and incremental costs and QALY estimates changed in different directions, suggesting that the inclusion of correlations can alter model results. Discussion. Linking multiple single-disease models provides a methodological option for decision analysts who undertake research on populations with multimorbidity. It also has potential for wider applications in informing decisions on commissioning of health care services and long-term priority setting across diseases and health care programs through providing potentially more accurate estimations of the relative cost-effectiveness of interventions.


Sign in / Sign up

Export Citation Format

Share Document