scholarly journals LncRNA XIST promotes liver cancer progression by acting as a molecular sponge of miR-200b-3p to regulate ZEB1/2 expression

2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110162
Author(s):  
Lili Liu ◽  
Hua Jiang ◽  
Hongming Pan ◽  
Xiuming Zhu

Objective To evaluate the predictive value of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) for survival, and determine the involvement of miRNA(miR)-200b-3p and zinc finger E-box-binding homeobox (ZEB) 1/2 in the pro-tumor effect of lncRNA XIST in liver cancer. Methods We evaluated lncRNA XIST expression in liver cancer tissues and cell lines by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and analyzed the correlation between its expression and overall survival of liver cancer patients by Kaplan–Meier analysis. Its effects on cell proliferation, migration, and invasion were analyzed by Cell-Counting Kit-8 and Transwell assays. The association between lncRNA XIST and miR-200b-3p, and the effects of lncRNA XIST on ZEB1/2 expression were explored using luciferase reporter assays, real-time PCR, and western blotting. Results The lncRNA XIST was significantly upregulated in liver cancer, and increased lncRNA XIST expression was associated with a poor prognosis. The lncRNA XIST promoted liver cancer cell proliferation, migration, and invasion in vitro, and acted as a molecular sponge for miR-200b-3p, and also regulated the expression of ZEB1/2 via miR-200b-3p. Conclusion The lncRNA XIST is an oncogenic lncRNA that promotes liver cancer metastasis, and its pro-metastatic phenotype can be partially attributed to the lncRNA XIST/miR-200b-3p/ZEB1/2 signaling axis.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2021 ◽  
Author(s):  
Can Chen ◽  
Yi Zong ◽  
Jiaojiao Tang ◽  
Ruisheng Ke ◽  
Lizhi Lv ◽  
...  

Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.


2021 ◽  
Author(s):  
Jianjie Zhao ◽  
Xueqin Wang ◽  
Juan Jiang ◽  
Yao Ding ◽  
qinan wu

Abstract Background: CircRNAs feature prominently in breast cancer (BC) progression. This study was intended to investigate the role of hsa_circ_0000520 in BC progression.Methods: After the sample collection, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted for quantifying the expressions of circ_0000520, miR-542-3p, and sphingosine-1-phosphate receptor 1 (S1PR1) mRNA. 5‐Ethynyl‐2′‐Deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assays were used for measuring cell proliferation. Transwell assays were employed to detect cell migration and invasion. Western blotting was utilized for analyzing S1PR1 protein expression. Dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used to delve into the targeting relationship between circ_0000520 and miR-542-3p.Results: Circ_0000520 expression was markedly elevated in BC cell lines and tissues, and knockdown of circ_0000520 could inhibit BC cell multiplication, migration, and invasion. Circ_0000520 could target miR-542-3p to negatively regulate S1PR1 expression. S1PR1 overexpression plasmid could counteract the inhibitory effects of circ_0000520 knockdown on BC cell proliferation, migration, and invasion.Conclusion: Circ_0000520, as a cancer-promoting circRNA, participates in BC progression by regulating miR-542-3p/S1PR1 axis.


2019 ◽  
Vol 9 (12) ◽  
pp. 1644-1652
Author(s):  
Xueqin Pan ◽  
Dongchun Ma

Lung cancer is one of the most common malignant cancers with a poor survival rate and high mortality worldwide. MiRNAs have been evaluated as crucial regulators of human gene expression, and exerted vital role involved in cancer progression. MiR-302a-3p was aberrant expressed in cancers that include pancreatic cancer and hepatocellular cancer, but its biological role in lung cancer remains elusive. This study aimed to discover the role and potential mechanism of miR-302a-3p in lung cancer. The lung cancer cell line with the highest expression of miR-302a-3p was selected, which was then subjected to transfection of miR-302a-3p mimic. Quantitative RT-PCR was performed to detect gene expression. Western blot assay was performed to determine corresponding genes that related to cell proliferation, apoptosis and invasion. Cell Counting Kit (CCK)-8 assay, flow cytometry analysis, wound healing and Transwell assay were performed to detect cell proliferation, apoptosis, migration and invasion, respectively. Luciferase reporter assay was carried out to identify the targeting relationship of miR-302-3p and HOXA-AS2. MiR-302a-3p was downregulated in lung cancer cells, and overexpression of miR-302a-3p significantly suppressed cell proliferation, migration, invasion and promoted cell apoptosis. HOXA-AS2 was a direct target of miR-302a-3p and was regulated by miR-302a-3p. HOXA-AS2 was upregulated in lung cancer cells. Upregulated HOXA-AS2 could reverse the effect that overexpression of miR-302a-3p caused on cell proliferation, apoptosis, migration and invasion. Overall, miR-302a-3p exhibited anti-oncogenic activity by inhibiting cell proliferation, migration and invasion, and promoting cell apoptosis in lung cancer by targeting HOXA-AS2, disclosing the role and regulatory mechanism of miR-302a-3p, which provided a promising therapeutic target for the clinical application of lung cancer treatment.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Run Liu ◽  
Xianwu Yang

Abstract Background This study aimed to explore the role and underlying molecular mechanisms of long non-coding RNA (lncRNA) LINC00342 in gastric cancer (GC). Methods The expression of LINC00342 in GC tissues was evaluated by Quantitative reverse transcription polymerase chain reaction (qRT-PCR). Silencing of LINC00342 was conducted to investigate the effect of LINC00342 in vitro and in vivo. The underlying molecular mechanisms of LINC00342 were determined by dual luciferase reporter assay, Western blotting analysis and rescue experiments. Biological functions of LINC00342 were evaluated by cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and Transwell assays. In addition, a tumor model was used to verify the effect of LINC00342 in tumorigenesis in vivo. Results LINC00342 was significantly upregulated in GC tissues and cell lines. Silencing of LINC00342 efficiently inhibited proliferation, migration and invasion of AGS cells in vitro, and also suppressed the tumorigenesis of GC in vivo. Functional experiments showed that LINC00342 regulated the expression of canopy fibroblast growth factor signaling regulator 2 (CNPY2) by competitively sponging miR-545-5p. Rescue experiments showed that inhibition of miR-545-5p and overexpression of CNPY2 significantly reversed cell phenotypes caused by silencing of LINC00342. Conclusion LINC00342 plays a potential oncogenic role in GC by targeting the miR545-5p/CNPY2 axis, and might act as a novel therapeutic target for GC.


2020 ◽  
Author(s):  
Ting Yang ◽  
Wei-Cong Chen ◽  
Pei-Cong Shi ◽  
Man-Ru Liu ◽  
Tao Jiang ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are considered critical regulators in cancers; however, the clinical significance and mechanisms of MAPKAPK5-AS1 (hereinafter referred to as MK5-AS1) in colorectal cancer (CRC) remain mostly unknown.Methods: In this study, quantitative real-time PCR (qPCR) and western blotting were utilized to detect the levels of MK5-AS1, let-7f-1-3p and MK5 (MAPK activated protein kinase 5) in CRC tissues and cell lines. The biological functions of MK5-AS1, let-7f-1-3p and MK5 in CRC cells were explored using Cell Counting Kit-8 (CCK8), colony formation and transwell assays. The potential mechanisms of MK5-AS1 were evaluated by RNA pull-down, RNA immunoprecipitation (RIP), dual luciferase reporter assay, chromatin immunoprecipitation (CHIP) and bioinformatics analysis. The effects of MK5-AS1 and MK5 on CRC were investigated by a xenotransplantation model. Results: We confirmed that MK5-AS1 was significantly increased in CRC tissues. Knockdown of MK5-AS1 suppressed cell migration and invasion in vitro and inhibited lung metastasis in mice. Mechanistically, MK5-AS1 regulated SNAI1 expression by sponging let-7f-1-3p and cis-regulated the adjacent gene MK5. Moreover, MK5-AS1 recruited RBM4 and eIF4A1 to promote the translation of MK5. Our study verified that MK5 promoted the phosphorylation of c-Jun, which activated the transcription of SNAI1 by directly binding to its promoter. Conclusions: MK5-AS1 cis-regulated the nearby gene MK5 and acted as a let-7f-1-3p sponge, playing a vital role in CRC tumorigenesis. This study could provide novel insights into molecular therapeutic targets of CRC.


2020 ◽  
Author(s):  
Nan Wang ◽  
Jia-Xing He ◽  
Guo-Zhan Jia ◽  
Ke Wang ◽  
Shuai Zhou ◽  
...  

Abstract Background: Recently, accumulated numbers of studies have reported that long noncoding RNAs (lncRNAs) process an important role in tumorigenesis. As a new member found in lncRNAs, the role of lncRNA XIST (XIST) in colorectal cancer (CRC) was still elusive. The objective of this study was conducted to characterize a novel regulatory network involving XIST in CRC cells. Methods: The mRNAs of XIST, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). And the proliferation and apoptosis of CRC cells were determined using cell counting kit-8 assay and flow cytometry. Moreover, we also detected the cell migration and invasion using Transwell assays. The relationships between XIST, miR-497-5p, and FOXK1 were predicted and then the dual-luciferase reporter assay was used to their relationships. The protein level of FOXK1 was quantitated using western blot. Results: In CRC tissues and cell lines, XIST expression was up-regulated, in which also existed miR-497-5p down-regulation and FOXK1 up-regulation. XIST knockdown suppressed CRC cell proliferation and migration as well as its invasion. Moreover, blocking the XIST expression could inhibit CRC tumor growth in vivo and the effects were antagonized by loss of miR-497-5p. miR-497-5p was identified as a sponge of XIST and also targeted FOXK1 in CRC cells. Besides, XIST silencing-mediated inhibitory activity against CRC progression reversed miR-497-5p down-regulation or FOXK1 up-regulation. Conclusion: In conclusion, XIST promotes the malignancy of colon cancer cells partly by competitively binding to miR-497-5p, which then led to increased FOXK1 expression. We conclude that targeting XIST may be a possible treatment for colon cancer.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Xiaobo Chen ◽  
Hongwen Sun ◽  
Yunping Zhao ◽  
Jing Zhang ◽  
Guosheng Xiong ◽  
...  

AbstractBackgroundThe aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC.MethodsThe protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay.ResultsWe discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities.ConclusionCirc_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao Xiao ◽  
Ge Jiang ◽  
Shengtao Zhang ◽  
Shuo Hu ◽  
Yunshan Fan ◽  
...  

Abstract Background The long non-coding (lnc) RNA activated by small nucleolar RNA host gene 16 (SNHG16), which has been reported to play a vital role in a number of different types of cancer, is a novel lncRNA. However, following an osteosarcoma (OS) study, the expression pattern, biological roles, clinical values and potential molecular mechanism of SNHG16 remain unclear. In the current study, we aimed to examine its expression and possible function in osteosarcoma (OS). Method Cell proliferation was measured by colony formation assay and Cell Counting Kit-8 (CCK-8) in vitro, and xenograft transplantation assay in vivo. Meanwhile, we used transwell chambers to test cell migration and invasion was evaluated. Cell cycle and apoptosis was evaluated by flow cytometry assay. Immunoblotting and qPCR analysis was carried out to detect protein and gene expression, respectively. Luciferase reporter assay was used to predict the potential downstream genes. Results The present study demonstrated that SNHG16 is highly expressed in both the tissues of patients with OS, as well as OS cell lines, and its expression level was positively correlated with clinical stage and poor overall survival. Functional assays revealed that the depletion of SNHG16 inhibits OS growth, OS cell progression and promotes apoptosis both in vivo and in vitro. In addition, the present study revealed that microRNA-1285-3p expression levels can be decreased by SNHG16 acting as a ‘sponge’, and that this pathway takes part in OS tumor growth in vivo, and OS cell proliferation, invasion, migration and apoptosis in vitro. Conclusions The results from the present study demonstrate the role of lncRNA SNHG16 in OS progression, which is SNHG16 might exert oncogenic role in osteosarcoma (OS) by acting as a ceRNA of miR-1285-3p, and it may become a novel target in OS therapy.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Fang Wang ◽  
Xiaochun Wang ◽  
Jingruo Li ◽  
Pengwei Lv ◽  
Mingli Han ◽  
...  

Abstract Background Circular RNAs (circRNAs) have caught increasing attentions and interests for their important involvement in cancer initiation and progression. This study aims to investigate the biological functions of circNOL10 and its potential molecular mechanisms in breast cancer (BC). Materials and methods qRT-PCR and western blot assays were performed to measure the expression of related genes. CCK-8, colony formation, flow cytomerty and transwell assays were used to assess cell proliferation, cell cycle, migration and invasion. RNA pull-down, luciferase reporter and RIP assays were applied to address the potential regulatory mechanism of circNOL10. Results CircNOL10 was down-regulated in BC tissues and cells. Low expression of circNOL10 was associated with larger tumor size, advanced TNM stage, lymph node metastasis and unfavorable prognosis. Overexpression of circNOL10 inhibited cell proliferation, migration, invasion and EMT in vitro and slowed xenograft tumor growth in vivo. Mechanistically, circNOL10 could act as a molecular sponge for miR-767-5p, leading to the up-regulation of suppressors of cytokine signaling 2 (SOCS2) and inactivation of JAK2/STAT5 pathway. Moreover, circNOL10-mediated suppression of malignant phenotypes was attenuated by miR-767-5p. Similar to circNOL10, enforced expression of SOCS2 also resulted in the suppression of cell proliferation and metastasis. Furthermore, knockdown of SOCS2 reversed the tumor-suppressive effect induced by circNOL10. Conclusions CircNOL10 repressed BC development via inactivation of JAK2/STAT5 signaling by regulating miR-767-5p/SOCS2 axis. Our findings offer the possibility of exploiting circNOL10 as a therapeutic and prognostic target for BC patients.


Sign in / Sign up

Export Citation Format

Share Document