Evidence for brain morphometric changes during the migraine cycle: A magnetic resonance-based morphometry study

Cephalalgia ◽  
2014 ◽  
Vol 35 (9) ◽  
pp. 783-791 ◽  
Author(s):  
Gianluca Coppola ◽  
Antonio Di Renzo ◽  
Emanuele Tinelli ◽  
Elisa Iacovelli ◽  
Chiara Lepre ◽  
...  

Neurophysiological investigations have demonstrated that there are unique fluctuations in the migraine brain functional activity between the ictal and interictal periods. Here we investigated the possibility that there are fluctuations over time also in whole brain morphometry of patients affected by episodic migraine without aura (MO). Twenty-four patients with untreated MO underwent 3T MRI scans during ( n = 10) or between attacks ( n = 14) and were compared to a group of 15 healthy volunteers (HVs). We then performed voxel-based-morphometry (VBM) analysis of structural T1-weighted MRI scans to determine if changes in brain structure were observed over the course of the migraine cycle. Interictally, MO patients had a significantly lower gray matter (GM) density within the right inferior parietal lobule, right temporal inferior gyrus, right superior temporal gyrus, and left temporal pole than did HVs. Ictally, GM density increased within the left temporal pole, bilateral insula, and right lenticular nuclei, but no areas exhibited decreased GM density. These morphometric GM changes between ictal and interictal phases suggest that abnormal structural plasticity may be an important mechanism of migraine pathology. Given the functional neuroanatomy of these areas, our findings suggest that migraine is a condition associated with global dysfunction of multisensory integration and memory processing.

Brain ◽  
2020 ◽  
Vol 143 (4) ◽  
pp. 1106-1113 ◽  
Author(s):  
Christoph J Schankin ◽  
Farooq H Maniyar ◽  
Denise E Chou ◽  
Michael Eller ◽  
Till Sprenger ◽  
...  

Abstract Patients with visual snow syndrome suffer from a continuous pan-field visual disturbance, additional visual symptoms, tinnitus, and non-perceptional symptoms. The pathophysiology of visual symptoms might involve dysfunctional visual cortex. So far, the extra-visual system has not been investigated. We aimed at identifying structural and functional correlates for visual and non-visual symptoms in visual snow syndrome. Patients were compared to age- and sex-matched controls using 18F-2-fluoro-2-deoxy-d-glucose PET (n = 20 per group) and voxel-based morphometry (n = 17 per group). Guided by the PET results, region of interest analysis was done in voxel-based morphometry to identify structural-functional correspondence. Grey matter volume was assessed globally. Patients had corresponding hypermetabolism and cortical volume increase in the extrastriate visual cortex at the junction of the right lingual and fusiform gyrus. There was hypometabolism in the right superior temporal gyrus and the left inferior parietal lobule. Patients had grey matter volume increases in the temporal and limbic lobes and decrease in the superior temporal gyrus. The corresponding structural and functional alterations emphasize the relevance of the visual association cortex for visual snow syndrome. The broad structural and functional footprint, however, confirms the clinical impression that the disorder extends beyond the visual system.


Author(s):  
Fernanda Schneider ◽  
Karine Marcotte ◽  
Amelie Brisebois ◽  
Sabrine Amaral Martins Townsend ◽  
Anderson Dick Smidarle ◽  
...  

Background A growing body of literature has demonstrated the importance of discourse assessment in patients who suffered from brain injury, both in the left and right hemispheres, as discourse represents a key component of functional communication. However, little is known about the relationship between gray matter density and macrolinguistic processing. Purpose This study aimed to investigate this relationship in a group of participants with middle–low to low socioeconomic status. Method Twenty adults with unilateral left hemisphere ( n = 10) or right hemisphere ( n = 10) chronic ischemic stroke and 10 matched (age, education, and socioeconomic status) healthy controls produced three oral narratives based on sequential scenes. Voxel-based morphometry analysis was conducted using structural magnetic resonance imaging. Results Compared to healthy controls, the left hemisphere group showed cohesion impairments, whereas the right hemisphere group showed impairments in coherence and in producing macropropositions. Cohesion positively correlated with gray matter density in the right primary sensory area (PSA)/precentral gyrus and the pars opercularis. Coherence, narrativity, and index of lexical informativeness were positively associated with the left PSA/insula and the superior temporal gyrus. Macropropositions were mostly related to the left PSA/insula and superior temporal gyrus, left cingulate, and right primary motor area/insula. Discussion Overall, the present results suggest that both hemispheres are implicated in macrolinguistic processes in narrative discourse. Further studies including larger samples and with various socioeconomic status should be conducted. Supplemental Material https://doi.org/10.23641/asha.14347550


2013 ◽  
Vol 25 (7) ◽  
pp. 1062-1077 ◽  
Author(s):  
Carol A. Seger ◽  
Brian J. Spiering ◽  
Anastasia G. Sares ◽  
Sarah I. Quraini ◽  
Catherine Alpeter ◽  
...  

This study investigates the functional neuroanatomy of harmonic music perception with fMRI. We presented short pieces of Western classical music to nonmusicians. The ending of each piece was systematically manipulated in the following four ways: Standard Cadence (expected resolution), Deceptive Cadence (moderate deviation from expectation), Modulated Cadence (strong deviation from expectation but remaining within the harmonic structure of Western tonal music), and Atonal Cadence (strongest deviation from expectation by leaving the harmonic structure of Western tonal music). Music compared with baseline broadly recruited regions of the bilateral superior temporal gyrus (STG) and the right inferior frontal gyrus (IFG). Parametric regressors scaled to the degree of deviation from harmonic expectancy identified regions sensitive to expectancy violation. Areas within the BG were significantly modulated by expectancy violation, indicating a previously unappreciated role in harmonic processing. Expectancy violation also recruited bilateral cortical regions in the IFG and anterior STG, previously associated with syntactic processing in other domains. The posterior STG was not significantly modulated by expectancy. Granger causality mapping found functional connectivity between IFG, anterior STG, posterior STG, and the BG during music perception. Our results imply the IFG, anterior STG, and the BG are recruited for higher-order harmonic processing, whereas the posterior STG is recruited for basic pitch and melodic processing.


1999 ◽  
Vol 175 (2) ◽  
pp. 127-134 ◽  
Author(s):  
J. Robin Highley ◽  
Brendan McDonald ◽  
Mary A. Walker ◽  
Margaret M. Esiri ◽  
Timothy J. Crow

BackgroundA previous report by Crow of a left-sided increase in temporal horn volume in schizophrenia implies a left-sided loss of tissue.AimsTo elucidate the structural nature of schizophrenia.MethodThe volume of grey matter in the temporal pole and inferior, middle and superior temporal gyri was measured, in addition to the total volume of grey and white matter, in the temporal lobes of the brains of 29 patients with schizophrenia and 27 controls.ResultsWe found a significant left-sided reduction in the superior temporal gyrus in both males and females with schizophrenia, which was related to increasing age of onset in the males. The total volume of temporal lobe grey and white matter was also significantly reduced. Although being more marked on the left than the right, the lateralisation for these total grey and white measures (by contrast with the superior temporal gyrus alone) did not attain formal statistical significance.ConclusionsConfirmation of a lateralised reduction in the superior temporal gyrus, which is differentially related to age of onset according to gender, adds to evidence that the changes in schizophrenia are in systems that are lateralised. The findings implicate language as the relevant function.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Kanako Sato ◽  
Eiji Kirino ◽  
Shoji Tanaka

The brain changes flexibly due to various experiences during the developmental stages of life. Previous voxel-based morphometry (VBM) studies have shown volumetric differences between musicians and nonmusicians in several brain regions including the superior temporal gyrus, sensorimotor areas, and superior parietal cortex. However, the reported brain regions depend on the study and are not necessarily consistent. By VBM, we investigated the effect of musical training on the brain structure by comparing university students majoring in music with those majoring in nonmusic disciplines. All participants were right-handed healthy Japanese females. We divided the nonmusic students into two groups and therefore examined three groups: music expert (ME), music hobby (MH), and nonmusic (NM) group. VBM showed that the ME group had the largest gray matter volumes in the right inferior frontal gyrus (IFG; BA 44), left middle occipital gyrus (BA 18), and bilateral lingual gyrus. These differences are considered to be caused by neuroplasticity during long and continuous musical training periods because the MH group showed intermediate volumes in these regions.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ting Su ◽  
Pei-Wen Zhu ◽  
Biao Li ◽  
Wen-Qing Shi ◽  
Qi Lin ◽  
...  

AbstractThis study proposes the use of the voxel-based morphometry (VBM) technique to investigate structural alterations of the cerebral cortex in patients with strabismus and amblyopia (SA). Sixteen patients with SA and sixteen healthy controls (HCs) underwent magnetic resonance imaging. Original whole brain images were analyzed using the VBM method. Pearson correlation analysis was performed to evaluate the relationship between mean gray matter volume (GMV) and clinical manifestations. Receiver operating characteristic (ROC) curve analysis was applied to classify the mean GMV values of the SA group and HCs. Compared with the HCs, GMV values in the SA group showed a significant difference in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, bilateral parahippocampal gyrus, and left anterior cingulate cortex. The mean GMV value in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, and bilateral parahippocampal gyrus were negatively correlated with the angle of strabismus. The ROC curve analysis of each cerebral region confirmed the accuracy of the area under the curve. Patients with SA have reduced GMV values in some brain regions. These findings might help to reveal the potential pathogenesis of SA and its relationship with the atrophy of specific regions of the brain.


Author(s):  
Viktória Tamás ◽  
Gabriella Sebestyén ◽  
Szilvia Anett Nagy ◽  
Péter Zsolt Horváth ◽  
Ákos Mérei ◽  
...  

AbstractNeglect is a severe neuropsychological/neurological deficit that usually develops due to lesions of the posterior inferior parietal area of the right hemisphere and is characterized by a lack of attention to the left side. Our case is a proven right-handed, 30-year-old female patient with a low-grade glioma, which was located in the temporo-opercular region and also in the superior temporal gyrus of the right hemisphere. Upon presurgical planning, the motor, language, and visuospatial functions were mapped. In order to achieve this, the protocol for routine magnetic resonance imaging and navigated transcranial magnetic stimulation has been expanded, accordingly.


2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Daniele Martinelli ◽  
Gloria Castellazzi ◽  
Roberto De Icco ◽  
Ana Bacila ◽  
Marta Allena ◽  
...  

In this study we used nitroglycerin (NTG)-induced migraine attacks as a translational human disease model. Static and dynamic functional connectivity (FC) analyses were applied to study the associated functional brain changes. A spontaneous migraine-like attack was induced in five episodic migraine (EM) patients using a NTG challenge. Four task-free functional magnetic resonance imaging (fMRI) scans were acquired over the study: baseline, prodromal, full-blown, and recovery. Seed-based correlation analysis (SCA) was applied to fMRI data to assess static FC changes between the thalamus and the rest of the brain. Wavelet coherence analysis (WCA) was applied to test time-varying phase-coherence changes between the thalamus and salience networks (SNs). SCA results showed significantly FC changes between the right thalamus and areas involved in the pain circuits (insula, pons, cerebellum) during the prodromal phase, reaching its maximal alteration during the full-blown phase. WCA showed instead a loss of synchronisation between thalami and SN, mainly occurring during the prodrome and full-blown phases. These findings further support the idea that a temporal change in thalamic function occurs over the experimentally induced phases of NTG-induced headache in migraine patients. Correlation of FC changes with true clinical phases in spontaneous migraine would validate the utility of this model.


2008 ◽  
Vol 20 (12) ◽  
pp. 2185-2197 ◽  
Author(s):  
Jennifer T. Coull ◽  
Bruno Nazarian ◽  
Franck Vidal

The temporal discrimination paradigm requires subjects to compare the duration of a probe stimulus to that of a sample previously stored in working or long-term memory, thus providing an index of timing that is independent of a motor response. However, the estimation process itself comprises several component cognitive processes, including timing, storage, retrieval, and comparison of durations. Previous imaging studies have attempted to disentangle these components by simply measuring brain activity during early versus late scanning epochs. We aim to improve the temporal resolution and precision of this approach by using rapid event-related functional magnetic resonance imaging to time-lock the hemodynamic response to presentation of the sample and probe stimuli themselves. Compared to a control (color-estimation) task, which was matched in terms of difficulty, sustained attention, and motor preparation requirements, we found selective activation of the left putamen for the storage (“encoding”) of stimulus duration into working memory (WM). Moreover, increased putamen activity was linked to enhanced timing performance, suggesting that the level of putamen activity may modulate the depth of temporal encoding. Retrieval and comparison of stimulus duration in WM selectively activated the right superior temporal gyrus. Finally, the supplementary motor area was equally active during both sample and probe stages of the task, suggesting a fundamental role in timing the duration of a stimulus that is currently unfolding in time.


Neuroscience ◽  
2009 ◽  
Vol 163 (4) ◽  
pp. 1102-1108 ◽  
Author(s):  
J. Peters ◽  
M. Dauvermann ◽  
C. Mette ◽  
P. Platen ◽  
J. Franke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document