scholarly journals Experimental characterization of tensile properties of epoxy resin by using micro-fiber specimens

2016 ◽  
Vol 35 (24) ◽  
pp. 1792-1801 ◽  
Author(s):  
Jun Misumi ◽  
Raja Ganesh ◽  
Subramani Sockalingam ◽  
John W Gillespie

In unidirectional carbon fiber-reinforced plastic laminates, the distance between fibers can varies from submicron to micron length scales. The mechanical properties of the matrix at this length scale are not well understood. In this study, processing methods have been developed to produce high quality epoxy micro-fibers with diameters ranging from 100 to 150 µm that are used for tensile testing. Five types of epoxy resin systems ranging from standard DGEBA to high-crosslink TGDDM and TGMAP epoxy systems have been characterized. Epoxy macroscopic specimens with film thickness of 3300 µm exhibited brittle behavior (1.7 to 4.9% average failure strain) with DGEBA resin having the highest failure strain level. The epoxy micro-fiber specimens exhibited significant ductile behavior (20 to 42% average failure strain) with a distinct yield point being observed in all five resin systems. In addition, the ultimate stress of the highly cross-linked TGDDM epoxy fiber exceeded the bulk film properties by a factor of two and the energy absorption was over 50 times greater on average. The mechanism explaining the dramatic difference in properties is discussed and is based on size effects (the film volume is about 2000 times greater than the fiber volume within the gage sections) and surface defects. Based on the findings presented in this paper, the microscale fiber test specimens are recommended and provide more realistic stress–strain response for describing the role of the matrix in composites at smaller length scales.

2020 ◽  
Vol 330 ◽  
pp. 01051
Author(s):  
Zohra Belkhir ◽  
Mouloud Merzoud ◽  
Amar Benazzouk

The use of natural fibers in cementitious matrices has an incompatibility, which results considerable retardation of setting and very low resistances during the composite tests with natural crushed Diss, despite the fact that the fibers have considerable tensile strengths, because of the sugars and water- soluble components contained in natural plants. To improve the fibers contribution in cementitious composites, we have carried out a treatment by boiling the natural fibers to extract the substances responsible for the bad connection between fibers and the cement paste. This phenomenon of incompatibility disappears with the use of clay matrix or lime, which allows using the fibers without any treatment. We were able to determine the mechanical behavior of composites in flexion and compression by measuring stresses and deformations. Through our vast experimental program on the composites of natural fibers of Alfa and Diss in different matrices (cement and clay) and different sizes ranging from 2 to 8 cm, we have found: 1) The best resistance in bending and compression are generally reached for the composites with fibers having the dimensions between 4 and 6 cm. 2) The best bending strengths are achieved for composites with cementitious matrices, because of the good adhesion of the fibers to the matrix. 3) The best compressive strengths are achieved for clay matrix composites, which are due to the good compressibility of the clay. 4) The composites of Alfa and Diss fibers presented a very ductile behavior as well in flexion as in compression, contrary to the pure binder paste which has a brittle behavior. 5) The composites obtained have a very low density, which makes it possible to classify them as lightweight materials and have a very ductile behavior, which suggests using these materials as filling in the seismic zones.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 411
Author(s):  
Izabela Miturska ◽  
Anna Rudawska ◽  
Miroslav Müller ◽  
Monika Hromasová

The proper process of preparing an adhesive composition has a significant impact on the degree of dispersion of the composition ingredients in the matrix, as well as on the degree of aeration of the resulting composition, which in turn directly affects the strength and functional properties of the obtained adhesive compositions. The paper presents the results of tensile strength tests and SEM microphotographs of the adhesive composition of Epidian 57 epoxy resin with Z-1 curing agent, which was modified using three fillers NanoBent ZR2 montmorillonite, CaCO3 calcium carbonate and CWZ-22 active carbon. For comparison purposes, samples made of unmodified composition were also tested. The compositions were prepared with the use of six mixing methods, with variable parameters such as type of mixer arm, deaeration and epoxy resin temperature. Then, three mixing speeds were applied: 460, 1170 and 2500 rpm. The analyses of the obtained results showed that the most effective tensile results were obtained in the case of mixing with the use of a dispersing disc mixer with preliminary heating of the epoxy resin to 50 °C and deaeration of the composition during mixing. The highest tensile strength of adhesive compositions was obtained at the highest mixing speed; however, the best repeatability of the results was observed at 1170 rpm mixing speed. Based on a comparison test of average values, it was observed that, in case of modified compositions, the values of average tensile strength obtained at mixing speeds at 1170 and 2500 rpm do not differ significantly with the assumed level of significance α = 0.05.


2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


1995 ◽  
Vol 117 (1) ◽  
pp. 133-138 ◽  
Author(s):  
G. Caprino ◽  
V. Tagliaferri ◽  
L. Covelli

A previously proposed micromechanical formula, aiming to predict the vaporization energy Qv of composite materials as a function of fiber and matrix properties and fiber volume ratio, was assessed. The experimental data, obtained on glass fiber reinforced plastic panels with different fiber contents cut by a medium power CO2 cw laser, were treated according to a procedure previously suggested, in order to evaluate Qv. An excellent agreement was found between experimental and theoretical Qv values. Theory was then used to predict the response to laser cutting of a composite material with a fiber content varying along the thickness. The theoretical predictions indicated that, in this case, the interpretation of the experimental results may be misleading, bringing to errors in the evaluation of the material thermal properties, or in the prediction of the kerf depth. Some experimental data were obtained, confirming the theoretical findings.


2012 ◽  
Vol 510-511 ◽  
pp. 577-584 ◽  
Author(s):  
A. Quddos ◽  
Mohammad Bilal Khan ◽  
R.N. Khan ◽  
M.K.K. Ghauri

The impregnation of the fiber with a resin system, the polymeric matrix with the interface needs to be properly cured so that the dimensional stability of the matrix and the composite is ensured. A modified epoxy resin matrix was obtained with a reactive toughening agent and anhydride as a curing agent. The mechanical properties of the modified epoxy matrix and its fiber reinforced composites were investigated systematically. The polymeric matrix possessed many good properties, including high strength, high elongation at break, low viscosity, long pot life at room temperature, and good water resistance. The special attentions are given to the matrix due to its low out gassing, low water absorption and radiation resistance. In addition, the fiber-reinforced composites showed a high strength conversion ratio of the fiber and good fatigue resistance. The dynamic and static of the composite material were studied by thermo gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) with EDX. The influences of processing technique such as curing and proper mixing on the mechanical and interfacial properties were determined. The results demonstrated that the modified epoxy resin matrix is very suitable for applications in products fabricated with fiber-reinforced composites.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


2021 ◽  
pp. 002199832110112
Author(s):  
Qing Yang Steve Wu ◽  
Nan Zhang ◽  
Weng Heng Liew ◽  
Vincent Lim ◽  
Xiping Ni ◽  
...  

Propagation of ultrasonic wave in Carbon Fiber Reinforced Polymer (CFRP) is greatly influenced by the material’s matrix, resins and fiber volume ratio. Laser ultrasonic broadband spectral technique has been demonstrated for porosity and fiber volume ratio extraction on unidirection aligned CFRP laminates. Porosity in the matrix materials can be calculated by longitudinal wave attenuation and accurate fiber volume ratio can be derived by combined velocity through the high strength carbon fiber and the matrix material with further consideration of porosity effects. The results have been benchmarked by pulse-echo ultrasonic tests, gas pycnometer and thermal gravimetric analysis (TGA). The potentials and advantages of the laser ultrasonic technique as a non-destructive evaluation method for CFRP carbon fiber volume fraction evaluation were demonstrated.


2007 ◽  
Vol 1 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Alma Hodzic ◽  
Richard Coakley ◽  
Ray Curro ◽  
Christopher C. Berndt ◽  
Robert A. Shanks

Bagasse fiber, a by-product of the sugar making process, maintains a coherent xylem structure and can offer mechanical reinforcement to composite materials. Biopolyester bagasse composites were prepared with biodegradable matrices polyhydroxylbutyrate (PHB) and its copolymer containing polyhydroxyvalerate (PHBV). Both biopolymers were reinforced with treated and untreated bagasse fibers, as well as fiber volume fractions involving two fiber lengths. Optimized properties were achieved with PHB-bagasse composite surpassing the PHB flexural strength by 50% and achieving higher strength and modulus than the standard thermoplastics. The bagasse fibers were cleaned with boiling water and acetone soxhlet extraction to avoid using adhesive chemicals and, therefore, comply with biosafety standards in the packaging industry. A significant improvement in the interfacial stress transfer between the fiber and the matrix was achieved with the fibers subjected to both washing and acetone treatment. While the crystallization of PHBV was shown to be controllable by processing conditions, it was concluded that no transcrystalline region was formed with this particular resin in any of the composites. Bagasse was shown to be an effective filler for PHBV; although the results varied somewhat due to the surface treatment of the bagasse fibers. On average, long fiber bagasse composites displayed flexural moduli 33% higher than those of PHBV. Overall, the results demonstrated the positive potential of bagasse to reinforce both biopolyester matrices.


2018 ◽  
Vol 33 (6) ◽  
pp. 828-850 ◽  
Author(s):  
R Vinayagamoorthy

The dominance of fibre-reinforced plastics in industries has enhanced the need for research to develop new composites and assess their properties. Among the various property analyses, tribological characteristics of the composites help to understand the friction and wear behaviour. This article presents a comprehensive survey on the tribological behaviour of polymeric composites, which includes the influence of various working parameters such as the velocity of sliding, sliding distance, pressure applied and temperature on the friction and wear. The article also addresses about the importance of the composite constituents such as fibre composition, fibre geometry and fibre orientation on the tribological behaviour. The major reasons causing the tribological failure like the debonding between the fibre and the matrix, failure of the matrix and the fibre are also extensively addressed. This review would be an insight to the industries and tribology researchers towards achieving optimum design for the components made of polymers.


2012 ◽  
Vol 238 ◽  
pp. 57-60 ◽  
Author(s):  
Shu Ling Gao ◽  
Wei Shao ◽  
Jin Li Qiao ◽  
Ling Wang

ECC (Engineered Cementitious Composites) has ultra-high toughness and can be used in the zone needing the ultra-high tensile strain and very high durability. In order to investigate the toughness of ECC, the normal fracture energy GFis calculated and compared with ordinary concrete. The influence of the matrix (fly ash, silicon fume), the fiber (glass fiber, steel fiber and PVA fiber) and the fiber volume ratio on the GFof ECC are analyzed. The research indicates that silicon fume and glass fiber, steel fiber are all not able to be used in ECC. But flash ash and PVA fiber are very suit for using in ECC, the toughness of ECC increases with the increase of their content.


Sign in / Sign up

Export Citation Format

Share Document