scholarly journals Mechanical and thermal properties of PP/PBT blends compatibilized with triblock thermoplastic elastomer

2015 ◽  
Vol 17 (3) ◽  
pp. 78-83 ◽  
Author(s):  
Wojciech Ignaczak ◽  
Kinga Wiśniewska ◽  
Jolanta Janik ◽  
Mirosława El Fray

Abstract A linear triblock copolymer, poly(styrene-b-etylene/butylene-b-styrene)(SEBS) thermoplastic elastomer (TPE) grafted with maleic anhydride was used for compatibilization of PP/PBT blends. PP/PBT blends of different mass ratios 60/40, 50/50, 40/60 were mixed with 2.5, 5.0 and 7.5 wt.% of SEBS copolymer in a twin screw extruder. Differential scanning calorimetry and dynamic mechanical analysis were performed to define the phase structure of PP/PBT blends. TPE with a rubbery mid-block shifted the glass transition of PP/PBT blend towards lower temperatures, and significant decrease the crystallization temperature of a crystalline phase of PP component was observed. The influence of the amount of compatibilizer and the blend composition on the mechanical properties (tensile and flexural strengths, toughness and moduli) was determined. Addition of 5 wt.% of a triblock TPE led to a three-fold increase of PP/PBT toughness. A significant increase of impact properties was observed for all materials compatibilized with the highest amount of SEBS copolymer.

2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2013 ◽  
Vol 849 ◽  
pp. 121-126 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Filipan Veljko ◽  
Vesna Ocelić Bulatović

The effect of the silane treated talc on the mechanical and thermal properties of talc filled thermoplastic polyurethane/polypropylene blends (TPU/PP blends) was investigated. Thermoplastic polyurethane and polypropylene are partially miscible due to the lack of interfacial interaction between the nonpolar crystalline PP and polar TPU. Blends of TPU and PP with silane treated and untreated-talc were prepared using melt blending in a laboratory twin-screw extruder. Organosilane (3-glycidoxypropyl-trimetoxy silane coupling agent) was used to treat talc in order to improve the affinity between the filler and the TPU/PP blends. Dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and mechanical (tensile test) measurements were used to characterize the talc filled and silane treated talc filled composites and TPU/PP/talc blends. The addition of silane treated and untreated talc in TPU/PP blends improved miscibility in all investigated TPU/PP/talc blends. The silane treatment increases the storage modulus in all investigated TPU/PP/talc blends in comparison with that of the untreated TPU/PP/talc blends. The obtained DSC results show that the addition of silane treated talc increases the degree of crystallinity (χc) of TPU/PP/talc blends because of the improved adhesion between the polymer and the treated talc. Addition of silane treated talc improved the mechanical properties as compared to TPU/PP/talc blends without chemical modification of talc. The results of strength correlate to the values of the storage modulus and crystallinity of the investigated TPU/PP/talc blends.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1421 ◽  
Author(s):  
Ignaczak ◽  
Sobolewski ◽  
El Fray

The aim of this work was to assess whether synthesized random copolyester, poly(butylene terephthalate-r-butylene dilinoleate) (PBT–DLA), containing bio-based components, can effectively compatibilize polypropylene/poly(butylene terephthalate) (PP/PBT) blends. For comparison, a commercial petrochemical triblock copolymer, poly(styrene-b-ethylene/butylene-b-styrene) (SEBS) was used. The chemical structure and block distribution of PBT–DLA was determined using nuclear magnetic resonance spectroscopy and gel permeation chromatography. PP/PBT blends with different mass ratios were prepared via twin-screw extrusion with 5 wt% of each compatibilizer. Thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis were used to assess changes in phase structure of PP/PBT blends. Static tensile testing demonstrated marked improvement in elongation at break, to ~18% and ~21% for PBT–DLA and SEBS, respectively. Importantly, the morphology of PP/PBT blends compatibilized with PBT–DLA copolymer showed that it is able to act as interphase modifier, being preferentially located at the interface. Therefore, we conclude that by using polycondensation and monomers from renewable resources, it is possible to obtain copolymers that efficiently modify blend miscibility, offering an alternative to widely used, rubber-like petrochemical styrene compatibilizers.


2021 ◽  
pp. 096739112110080
Author(s):  
Yelda Meyva Zeybek ◽  
Cevdet Kaynak

The main purpose of this study was to investigate influences of three parameters on the mechanical and thermal properties of the polylactide (PLA) matrix nanocomposites filled with polyhedral oligomeric silsesquioxane (POSS) particles. For the first parameter of “Filler Content”, nanocomposites with 1, 3, 5, 7 wt% basic POSS structure were compared. For the second parameter of “Functional Group,” basic POSS structure having only nonpolar isobutyl groups were compared with three other functionalized POSS structures; i.e. aminopropylisobutyl-POSS (ap-POSS), propanediolisobutyl-POSS (pd-POSS) and octasilane-POSS (os-POSS). Finally, for the third parameter of “Copolymer Compatibilization,” all specimens were compared before and after their maleic anhydride (MA) grafted copolymer compatibilization. Specimens were produced with twin-screw extruder melt mixing and shaped under compression molding. Various tests and analyses indicated that the optimum filler content for the improved mechanical properties was 1 wt%; while the optimum structure for strength and modulus was pd-POSS structure, in terms of fracture toughness it was basic POSS structure. Additional use of MA compatibilization was especially effective for the basic POSS and os-POSS particles.


2021 ◽  
pp. 108201322110692
Author(s):  
Nispa Seetapan ◽  
Bootsrapa Leelawat ◽  
Nattawut Limparyoon ◽  
Rattana Yooberg

Rice noodles have been manufactured in the food industry using different extrusion methods, such as traditional and modern extrusions, which affect the noodle structure and qualities. Therefore, the effects of the extrusion process on qualities of rice noodles using the same blend of rice flour and crosslinked starch were evaluated. In this study, a capillary rheometer was used as an alternative approach to simulate the traditional extrusion method in which the noodles are obtained by continuously pressing the pregelatinized noodle dough through a die. For modern extrusion, a twin-screw extruder was employed to obtain the noodles in a one-step process. The optimal range of moisture content used in the formulation was studied. Upon cooking, the noodles showed a decrease in cooking time and cooking loss with increasing moisture content in the formulation. All cooked noodles showed comparable tensile strength, but those extruded by a twin-screw extruder had substantially greater elongation. Scanning electron micrographs revealed that the noodles prepared using the extruder had a denser starch matrix, while those obtained from a capillary rheometer showed the aggregation of starch fragments relevant to the existence of starch gelatinization endotherm from differential scanning calorimetry. This indicated that the extrusion process using the twin-screw extruder provided a more uniform starch transformation, i.e., more starch granule disruption and gelatinization, thus giving the noodles a more coherent structure and better extensibility after cooking. The obtained results suggested that different thermomechanical processes used in the noodle industry gave the extruded rice noodles different qualities respective to their different microstructures.


2013 ◽  
Vol 545 ◽  
pp. 211-215 ◽  
Author(s):  
Jirawat Kajornchaiyakul ◽  
Chanchira Jubsilp ◽  
Sarawut Rimdusit

-Highly filled alumina polymer composites based on bisphenol-A/aniline benzoxazine resin (BA-a) were developed. The mechanical and thermal properties of these highly filled composites at various alumina filler contents from 0 to 85 % by weight were studied by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The experimental results revealed that the storage modulus (E') at room temperature was increased from 5.93 GPa of the neat polybenzoxazine up to about 45.27 GPa of the composites with the maximum alumina content of 83 % by weight. The glass-transition temperatures (Tg) of the composites systematically increased with increasing the alumina filler contents. The Tgs of the obtained composites having alumina content ranging from 50 to 83 % by weight were found to be 178°C to 188°C, which higher that the Tg of the polybenzoxazine, i.e. 176°C implying substantial interfacial interaction between the alumina particle and the polybenzoxazine.


2005 ◽  
Vol 13 (4) ◽  
pp. 385-394
Author(s):  
Huiyu Bai ◽  
Yong Zhang ◽  
Yinxi Zhang ◽  
Xiangfu Zhang ◽  
Wen Zhou

New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with commercial poly(ethylene-co-octene) copolymer (POE), varying the POE content up to 10 wt%, in a twin screw extruder, followed by injection moulding. The influence of POE on the properties of the PBT/PC blends was investigated in terms of mechanical testing, dynamic mechanical thermal (DMTA) analysis, differential scanning calorimetry (DSC), and scanning electronic microscopy (SEM). The results showed that addition of POE led to remarkable increases in the impact strength, elongation at break and Vicat temperature, and a reduction in the tensile strength and flexural properties of PBT/PC blends. The morphology of the blends was observed using SEM and the average diameter of the dispersed phase was determined by image analysis. The critical inter-particle distance for PBT/PC was determined.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5789
Author(s):  
Olga Mysiukiewicz ◽  
Mateusz Barczewski ◽  
Arkadiusz Kloziński

Polylactide-based composites filled with waste fillers due to their sustainability are a subject of many current papers, in which their structural, mechanical, and thermal properties are evaluated. However, few studies focus on their behavior in low temperatures. In this paper, dynamic and quasi-static mechanical properties of polylactide-based composites filled with 10 wt% of linseed cake (a by-product of mechanical oil extraction from linseed) were evaluated at room temperature and at −40 °C by means of dynamic mechanical analysis (DMA), Charpy’s impact strength test and uniaxial tensile test. It was found that the effect of plasticization provided by the oil contained in the filler at room temperature is significantly reduced in sub-zero conditions due to solidification of the oil around −18 °C, as it was shown by differential scanning calorimetry (DSC) and DMA, but the overall mechanical performance of the polylactide-based composites was sufficient to enable their use in low-temperature applications.


2020 ◽  
Vol 54 (18) ◽  
pp. 2489-2504 ◽  
Author(s):  
Ulas Can ◽  
Cevdet Kaynak

The main purpose of this study was to investigate mechanical and thermal performance of polylactide specimens against UV irradiation; first when only adding benzotriazole benzotriazole-based organic UV absorber (UVA), micro (200 nm) and nano (50 nm) sized titania (TiO2) particles alone, and then to reveal possible synergism when they are added together. Compounds were prepared by twin-screw extruder melt mixing, while the 2 mm thick specimens were shaped by compression molding. Specimens were exposed to UV irradiation under fluorescent lamps (UVB-313) with 0.50 W/m2 for the periods of 12 and 24 days. Changes in the performance of UV irradiated specimens were evaluated in terms of % weight loss, changes in color and chemical structure, including the decreases in the mechanical and thermal properties. Various tests and analysis revealed that synergistic benefits of using micro and nano TiO2 particles together with benzotriazole-type UVA were not only due to the effective stiffening, strengthening and toughening actions of titania particles, but also due to their very significant “UV screening” actions absorbing the photons of the UV irradiation, thus decreasing the degree of the detrimental photodegradation reactions leading to chain scissions in their PLA matrix.


2018 ◽  
Vol 773 ◽  
pp. 67-71 ◽  
Author(s):  
Paweesinee Chatkunakasem ◽  
Panisa Luangjuntawong ◽  
Aphiwat Pongwisuthiruchte ◽  
Chuanchom Aumnate ◽  
Pranut Potiyaraj

The objective of this study is to improve high density polyethylene (HDPE) properties for 3D printing by addition of graphene and low density polyethylene (LDPE). Graphene was prepared by modified Hummer’s method. The prepared graphene was characterized by the infrared spectroscopy and the X-ray diffraction analysis (XRD). Graphene/HDPE and LDPE/HDPE composites were successfully prepared through the melt-blending technique using a twin-screw extruder. The melt flow index (MFI) and differential scanning calorimetry (DSC) were employed to characterize neat HDPE and the modified HDPE. FTIR and XRD results show that graphite was successfully changed into graphene completely and MFI of graphene/HDPE and LDPE/HDPE decreased as the amount of graphene and LDPE in the composite blends increased. DSC results show that the addition of low crystalline polymers can reduce a crystallization temperature and crystallinity content.


Sign in / Sign up

Export Citation Format

Share Document