Unidirectional continuous fiber-reinforced polypropylene single-polymer composites prepared by extrusion–calendering process

2019 ◽  
pp. 089270571988689
Author(s):  
Jian Wang ◽  
Feiyan Song ◽  
Mingxing Yu

An extrusion–calendering process was developed to continuously manufacture unidirectional continuous fiber-reinforced polypropylene single-polymer composites (PP SPCs). The process combined “undercooling” property of the matrix and “overheating” property of the fiber, which can not only establish a wide processing temperature window but also enhance the mechanical properties of the final SPCs. The best tensile strength and modulus of the PP SPCs with only 5 wt% fiber content were up to 53.34 ± 3.56 MPa and 1.81 ± 0.14 GPa, 2 times and 1.59 times higher than those of pure PP, respectively, and they also exceeded the theoretical values due to the high performance of the uniaxial fibers and the optimized process. The influences of the die temperature, fiber contents, and fiber distribution were studied. Scanning electron microscopy was also used to observe the morphological properties of the PP SPCs.

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1369 ◽  
Author(s):  
Yueke Ming ◽  
Yugang Duan ◽  
Ben Wang ◽  
Hong Xiao ◽  
Xiaohui Zhang

Recently, 3D printing of fiber-reinforced composites has gained significant research attention. However, commercial utilization is limited by the low fiber content and poor fiber–resin interface. Herein, a novel 3D printing process to fabricate continuous fiber-reinforced thermosetting polymer composites (CFRTPCs) is proposed. In brief, the proposed process is based on the viscosity–temperature characteristics of the thermosetting epoxy resin (E-20). First, the desired 3D printing filament was prepared by impregnating a 3K carbon fiber with a thermosetting matrix at 130 °C. The adhesion and support required during printing were then provided by melting the resin into a viscous state in the heating head and rapidly cooling after pulling out from the printing nozzle. Finally, a powder compression post-curing method was used to accomplish the cross-linking reaction and shape preservation. Furthermore, the 3D-printed CFRTPCs exhibited a tensile strength and tensile modulus of 1476.11 MPa and 100.28 GPa, respectively, a flexural strength and flexural modulus of 858.05 MPa and 71.95 GPa, respectively, and an interlaminar shear strength of 48.75 MPa. Owing to its high performance and low concentration of defects, the proposed printing technique shows promise in further utilization and industrialization of 3D printing for different applications.


2019 ◽  
Vol 31 (9-10) ◽  
pp. 1132-1139
Author(s):  
Zhidong Ren ◽  
Sijia Hao ◽  
Yue Xing ◽  
Cheng Yang ◽  
Shenglong Dai

Asymmetric 2-(4′-maleimido)phenyl-2-(4′-maleimidophenoxyl)phenylbutane (EBA-BMI) was successfully mixed with N, N′-(4,4′-diphenylmethane)bismaleimide (DDM-BMI) to prepare the matrix resins for high-temperature fiber-reinforced polymeric composites (glass transition temperature ( Tg) > 400°C). Experimental results imply that DDM-BMI/EBA-BMI (DE-BMIs) show excellent melting performance with wide processing temperature window and low molten viscosity, suggesting excellent compatibility between DDM-BMI and EBA-BMI. For example, the viscosity of DE-BMI41 (DDM-BMI/EBA-BMI, 4/1) is about 474–51 mPa·s in the temperature range of 148–180 °C. In addition, cured DE-BMIs represent remarkable thermal properties with Tg over 400°C, under which the storage modulus could still reach as high as 3.2 GPa. Meanwhile, the coefficient of thermal expansion of these cured resins is about 36–40 ppm °C−1 at 50–250°C, and the 5% weight loss temperature is about 470°C.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 511 ◽  
Author(s):  
Eyerusalem A. Taye ◽  
Judith A. Roether ◽  
Dirk W. Schubert ◽  
Daniel T. Redda ◽  
Aldo R. Boccaccini

Novel hemp fiber reinforced geopolymer composites were fabricated. The matrix was a new geopolymer based on a mixture of red mud and fly ash. Chopped, randomly oriented hemp fibers were used as reinforcement. The mechanical properties of the geopolymer composite, such as diametral tensile (DTS) (or Brazilian tensile) strength and compressive strength (CS), were measured. The geopolymer composites reinforced with 9 vol.% and 3 vol.% hemp fiber yielded average DTS values of 5.5 MPa and average CS values of 40 MPa. Scanning electron microscopy (SEM) studies were carried out to evaluate the microstructure and fracture surfaces of the composites. The results indicated that the addition of hemp fiber is a promising approach to improve the mechanical strength as well as to modify the failure mechanism of the geopolymer, which changed from brittle to “pseudo-ductile”.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2459-2465 ◽  
Author(s):  
R. J. T. LIN ◽  
D. BHATTACHARYYA ◽  
S. FAKIROV

The concept of microfibrillar composite (MFC) has been used to create a new type of polymer composites, in which the reinforcing microfibrils are loaded with carbon nanotubes (CNT). Polyamide 66 (PA66) has been melt blended with polypropylene in a twin screw extruder with and without CNT, and thereafter cold drawn to create a fibrillar state as well as to align the CNT in the PA66 microfibrils. The drawn bristles were compression moulded at 180°C to prepare MFC plates. The scanning electron microscope (SEM) observations indicate near perfect distribution of CNT in the reinforcing PA66 microfibrils. Although the fibrillated PA66 is able to improve the tensile stiffness and strength as expected from the MFC structure, the incorporation of CNT does not exhibit any further enhancing effect. It rather adversely affects the mechanical properties due to poor interface adhesion between the matrix and the reinforcing microfibrils with the presence of CNT, as demonstrated by SEM. However, the resulting highly aligned CNT within the MFC are expected to affect the physical and functional properties of these composites.


Sign in / Sign up

Export Citation Format

Share Document