Enhancing the mechanical properties of SCF/PEEK composites in FDM via process-parameter optimization

2021 ◽  
pp. 095400832110036
Author(s):  
Bin Hu ◽  
Zehua Xing ◽  
Weidong Wu ◽  
Xiaojun Zhang ◽  
Huamin Zhou ◽  
...  

Short-carbon-fiber (SCF)–reinforced poly-ether-ether-ketone (PEEK) is a promising polymer composite material with good biocompatibility, a high strength-to-weight ratio, and low friction properties. In artificial-bone fabrication and other applications with more flexible fabrication demands, fused-deposition modeling (FDM) technology enables the rapid and low-cost fabrication of SCF/PEEK parts with sophisticated structures. Owing to the high viscosity of melting PEEK composites, great challenges, associated with the poor internal interface, need to be overcome before enhanced mechanical properties can be obtained. In this study, key processing parameters and various SCF amounts were studied to investigate their effects on the mechanical properties of PEEK composites. It was revealed that the existence of voids and gaps between the SCF and PEEK led to a decrease in the strength of the composite systems. The FDM processing parameters were tuned to eliminate these defects in the PEEK composites. The tensile strength of the 2% SCF/PEEK sample reached 96.4 MPa, which is comparable to that of PEEK parts prepared by injection molding. Meanwhile, its elastic modulus reached 2.6 GPa, which is 169% higher than that of the bare PEEK sample.

2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


2014 ◽  
Author(s):  
◽  
Brian Graybill

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] As rapid prototyping processes continue to be developed, there is increasing use of such processes for the production of end-use parts. Fused deposition modeling (FDM) is a particularly favorable method for fabricating end-use parts because of the wide selection of materials available for the process such as Ultem 9085, prized by the aerospace industry for its high strength-to-weight ratio. To confidently employ FDM parts in service requires a thorough understanding of their behavior under expected loading conditions and the ability to predict their success for failure in a particular application. The strength of an FDM part is derived from the amount of bonding that occurs between the polymer filaments as they are deposited. Thus, an accurate prediction of this bond length should lead naturally to an accurate prediction of part strength. Models simulating the heat transfer and coalescence experienced by a pair of adjacent filaments are developed and presented. The models are executed across a range of build parameters to help determine flexibility, and provide a value for the predicted bond length. To validate the models, FDM parts are built from Ultem 9085, cross sectioned, and imaged. The images allow measurements of actual bond lengths to be obtained. The measured bond lengths are compared to the predicted bond lengths. Only a select number of bond lengths measurements are obtained because of variations in microstructure corresponding to various build parameters. A predictive accuracy of 95 % is desired, but the model is unable to achieve it due to estimates of critical data that is unavailable and the variability inherent in the FDM process. However, the simulations provide a significant foundation for future modeling efforts aimed at providing a model capable of predicting bond lengths, and therefore strengths, of FDM parts.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1094 ◽  
Author(s):  
Valentina Mazzanti ◽  
Lorenzo Malagutti ◽  
Francesco Mollica

As biodegradable thermoplastics are more and more penetrating the market of filaments for fused deposition modeling (FDM) 3D printing, fillers in the form of natural fibers are convenient: They have the clear advantage of reducing cost, yet retaining the filament biodegradability characteristics. In plastics that are processed through standard techniques (e.g., extrusion or injection molding), natural fibers have a mild reinforcing function, improving stiffness and strength, it is thus interesting to evaluate whether the same holds true also in the case of FDM produced components. The results analyzed in this review show that the mechanical properties of the most common materials, i.e., acrylonitrile-butadiene-styrene (ABS) and PLA, do not benefit from biofillers, while other less widely used polymers, such as the polyolefins, are found to become more performant. Much research has been devoted to studying the effect of additive formulation and processing parameters on the mechanical properties of biofilled 3D printed specimens. The results look promising due to the relevant number of articles published in this field in the last few years. This notwithstanding, not all aspects have been explored and more could potentially be obtained through modifications of the usual FDM techniques and the devices that have been used so far.


e-Polymers ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 87-98
Author(s):  
Kilole Tesfaye Chaka

Abstract Polypropylene (PP) undergoes fast crystallization and resulting in rigorous shrinkage when it is subjected to high temperature likewise of the fused deposition modeling (FDM) process. This research study focuses on the investigation of the processing parameters and factors that decrease the warpage of PP during the FDM process. Aluminium silicate dihydrate (K) microparticles of different ratios were melt blended with PP by a twin-screw extruder, and filaments of about 1.7 mm diameter were extruded in a single screw extruder. Then, the extruded filaments were used to fabricate the dumbbells structure through the FDM process. The effects of optimizing the fused deposition temperature, coating the chamber with thick papers/fabrics, and coating a printer bed with PP material were also investigated in this study. Scanning and transmission electron microscopy, differential scanning calorimetry, melt flow, and mechanical properties testing instruments are used to analyze the microparticles dispersion, crystallization, flow, and mechanical properties of resulting samples. Uniformly dispersed filler and increased printing chamber temperature result in an increase of crystallization temperature and improve the dimensional accuracy of fused deposited specimens. The fused deposited PP-K10 wt% composite showed an improvement of up to 32% in tensile modulus compared to the neat PP.


2020 ◽  
pp. 089270572094191
Author(s):  
Ali Bin Naveed ◽  
Shahid Ikramullah Butt ◽  
Aamir Mubashar ◽  
Fausz Naeem Chaudhry ◽  
Najam ul Qadir ◽  
...  

Research shows that mechanical properties of parts produced using fused deposition modeling (FDM) are inferior when compared to parts produced using conventional techniques such as injection molding. Efforts have been made in recent years to improve mechanical properties by reinforcing the parts with high strength fibers. This has been achieved by either modifying FDM setups to extrude fibers with thermoplastics and fabricate continuous fiber reinforced thermoplastic composites (CFRTPCs) or employing manual techniques subsequent to part production. Existing CFRTPCs fabrication procedures have limitations of fiber exposure to environment, no direct control method for volume fraction, and poor surface finish. This research work is focused on improving the process of producing CFRTPCs by addressing these limitations using a dual extruder FDM setup. The process developed was tested for its feasibility using Kevlar fiber as reinforcement for commercially available ABS, PLA, PLA-C, and PLA-Cu thermoplastic fibers. Taguchi L16 orthogonal array was used to design experiments, while tensile and flexural testing was performed to determine mechanical properties achieved. Tensile strength was improved up to 3 times the baseline value of thermoplastics, while flexural strength was improved up to 1.6 times. This technique can further the goal of developing CFRTPCs, on industrial level, using FDM with better control over volume fraction and fiber layup.


2019 ◽  
Vol 25 (11) ◽  
pp. 1249-1264 ◽  
Author(s):  
Amoljit Singh Gill ◽  
Parneet Kaur Deol ◽  
Indu Pal Kaur

Background: Solid free forming (SFF) technique also called additive manufacturing process is immensely popular for biofabrication owing to its high accuracy, precision and reproducibility. Method: SFF techniques like stereolithography, selective laser sintering, fused deposition modeling, extrusion printing, and inkjet printing create three dimension (3D) structures by layer by layer processing of the material. To achieve desirable results, selection of the appropriate technique is an important aspect and it is based on the nature of biomaterial or bioink to be processed. Result & Conclusion: Alginate is a commonly employed bioink in biofabrication process, attributable to its nontoxic, biodegradable and biocompatible nature; low cost; and tendency to form hydrogel under mild conditions. Furthermore, control on its rheological properties like viscosity and shear thinning, makes this natural anionic polymer an appropriate candidate for many of the SFF techniques. It is endeavoured in the present review to highlight the status of alginate as bioink in various SFF techniques.


2021 ◽  
pp. 089270572199789
Author(s):  
S Gohar ◽  
G Hussain ◽  
A Ali ◽  
H Ahmad

Honey Comb Sandwich Structures (HCSS) have numerous applications in aerospace, automobile, and satellite industry because of their properties like high strength to weight ratio, stiffness and impact strength. Fused Deposition Modeling (FDM) is a process which, through its flexibility, simple processing, short manufacturing time, competitive prices and freedom of design, has an ability to enhance the functionality of HCSS. This paper investigates the mechanical behavior (i.e. flexural, edgewise compression and Interfacial bond strength) of FDM-built HCSS. The influence of face/core material was examined by manufacturing four types of specimens namely ABS core with Composite (PLA + 15% carbon fibers) face sheets, ABS core with PLA face sheets, TPU core with composite face sheets and TPU core with PLA face sheets. To measure the effect of face sheets geometry, raster layup was varied at 0°/90° and 45°/−45°. The mechanical characterization revealed that an optimum combination of materials is ABS core with composite face sheets having raster layup of 0°/90°. This study indicates that HCSS with complex lamination schemes and adequate mechanical properties could be manufactured using FDM which may widen the applications of FDM on an industrial scale.


Sign in / Sign up

Export Citation Format

Share Document