Crosslink density and mechanical property evolution during the curing of polyurethane-urea/sodium silicate hybrid composites

2021 ◽  
pp. 095400832110394
Author(s):  
Yong Sun ◽  
Anqi Yu ◽  
Yuntao Liang ◽  
Gang Wang ◽  
Shuanglin Song ◽  
...  

In order to understand the evolution of the structure–property relationship between the crosslink density and mechanical properties of polyurethane-urea/sodium silicate (PU/SS) hybrid composites, a series of PU/SS composites with 2.5 wt% organofunctional silanes and pure PU/SS composites are investigated at different curing time. Mechanical properties, the fracture surface morphology, and thermo-mechanical properties of these PU/SS composites are characterized by electron omnipotence experiment machine, scanning electron microscope, and dynamic mechanical analysis (DMA), respectively. The mechanical test results show the strength and fracture toughness of the PU/SS composites first increase and then stabilize during cure, and the modification leads to PU/SS composites with significantly higher mechanical properties. Further, the morphology of fractured samples also reveals that the longer curing time and the modification of the PU/SS composites means a higher curing degree. Moreover, the increase in the crosslink density calculated from the DMA tests quantitatively confirmed the positive influence of the curing time and the modification in enhancing mechanical properties. In addition, it is also found that the mechanical properties of the PU/SS composites not only depend on the crosslink density but also on the well-dispersed hybrid PU/SS system.

2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


2017 ◽  
Vol 904 ◽  
pp. 146-150 ◽  
Author(s):  
Manjunath Shettar ◽  
U. Achutha Kini ◽  
Sathya Shankar Sharma ◽  
Pavan Hiremath

The review is on aimed an insight source for FRP-Nanoclay hybrid composite (nanocomposite) research, which includes basic structure/property, preparation & characterization techniques, mechanical properties and applications of hybrid composites. Key factors are discussed, which are influencing the mechanical properties of nanocomposite with nanoclay addition. Conclusions are also drawn based on the research of nanocomposites and improvement in mechanical properties.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 126 ◽  
Author(s):  
Hanqi Zhang ◽  
Bing Wang ◽  
Yanna Wang ◽  
Heng Zhou

The phenol-containing phthalonitrile resin is a kind of self-curing phthalonitrile resin with high-temperature resistance and excellent properties. However, the onefold phthalonitrile resin is unattainable to cured completely, and the brittleness of the cured product is non-negligible. This paper focuses on solving the above problems by blending novolac resin into phenol-containing phthalonitrile. Under the action of abundant hydroxyl group, the initial curing temperature and gelation time at 170 °C decrease by 88 °C and 2820 s, respectively, monitored by DSC and rheological analysis. FT-IR spectra of copolymers showed that the addition of novolac increased the conversion rate of nitrile. When the novolac mass fraction is 10%, the peak of nitrile group disappears, which means the complete reaction. The mechanical test of blends composites shows that the maximum fracture strain of 10 wt% novolac addition is 122% higher than those of neat phthalonitrile composites on account of the introduction of flexible novolac chain segments. The mechanical properties are sensitive to elevated post-cured temperature; this is consistent with the result of morphological investigation using SEM. Finally, the dynamic mechanical analysis indicated that the glass transition temperature heightened with the increase of novolac content and post-curing temperature.


2011 ◽  
Vol 51 (2) ◽  
pp. 729
Author(s):  
Colin Wood ◽  
Karen Kozielski ◽  
Wendy Tian ◽  
Song Gao ◽  
Jonathan Hodgkin ◽  
...  

The development of new deepwater oil and gas fields provide an opportunity for increased use of new materials. Conventional infrastructure is constructed using significant quantities of steel and concrete, which is becoming less practical in comparison to new light weight, easy to handle composites. When infrastructure needs to be repaired, there is often a requirement for underwater welding, which carries considerable occupational health, safety and environment (OHSE) risks. For this reason, moving away from traditional metal structures or repair technologies is increasingly attractive. In recent years a number of new water activated composite wrap materials have been developed for use in underwater applications. The materials properties that are required can be difficult to achieve and maintain over an extended period of exposure to the marine environment, though, so many research groups are working on this challenge. A comprehensive literature review has been undertaken to identify present state of the art ideas for the development of improved underwater materials and this will be discussed in the context of adhesive applications. Preliminary material characterisation work will be described where new resins have been formulated to perform well in marine environments and survive prolonged exposure to seawater. Experiments were carried out in artificial seawater and samples left to cure at a range of temperatures DSC and dynamic mechanical analysis (DMTA) were used to evaluate the crosslink density of the network and the glass transition temperature respectively, while FTIR was used to determine the chemical structure in the cured systems. Preliminary mechanical test results have shown significant improvement in strength for the new formulations compared to a set of control samples of commercially available materials.


Author(s):  
Yuanxin Zhou ◽  
Peixuan Wu ◽  
Zhongyang Cheng ◽  
Biddut Kanti Dey ◽  
Shaik Jeelani

In this study, electrical, thermal and mechanical properties of multi-walled carbon nanotubes (CNTs) reinforced Epon 862 epoxy have been evaluated. Firstly, 0.1 wt%, 0.2 wt%, 0.3 wt%, and 0.4 wt% CNT were infused into epoxy through a high intensity ultrasonic liquid processor and then mixed with EpiCure curing agent W using a high speed mechanical agitator. The trapped air and reaction volatiles were removed from the mixture using a high vacuum. Neat epoxy sample also was made as reference. Electrical conductivity, dynamic mechanical analysis (DMA, three point bending tests and fracture tests were performed on unfilled, CNT-filled epoxy to identify the loading effect on the properties of composites. Experimental results show significant improvement in electric conductivity. The resistivity of epoxy decreased to 15Ωm with 0.4% CNT. DMA studies revealed that filling the carbon nanotube into epoxy can produce a 90% enhancement in storage modulus and a 17° C increase in Tg, but CNT has little effect on decomposing temperature. Mechanical test results showed that modulus increased with higher CNT loading percentages, but the 0.3 wt% CNT-infusion system showed the maximum strength and fracture toughness enhancement. The decrease in strength and fracture toughness in 0.4% CNT/epoxy was attributed to poor dispersions of nanotubes in the composite.


2019 ◽  
Vol 131 ◽  
pp. 01127
Author(s):  
Wen Wen Yu ◽  
Jian Gao Shi ◽  
Yong Li Liu ◽  
Lei Wang

Ultra-high molecular weight polyethylene (UHMWPE) and graphene (GR) was melt compounded by reactive extrusion. Nanocomposite monofilaments were prepared by melt spinning through a co-rotating screw extruder and drawing at hot water. GR/UHMWPE nanocomposite ropes were twisted using nanocomposite monofilaments. A structure and mechanical properties of the GR/UHMWPE nanocomposite monofilaments and its ropes had been characterized by scanning electron microscopy (SEM), and mechanical test. Results showed that the monofilaments surface of monofilaments became rougher with introducing of GR nanosheets, which could be related to stacking of GR. The breaking load of GR/UHMWPE nanocomposite ropes was remarkably improved upon nanofiller addition, with the decrease of the elongation at break.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4801
Author(s):  
Yasir Khaleel Kirmasha ◽  
Mohaiman J. Sharba ◽  
Zulkiflle Leman ◽  
Mohamed Thariq Hameed Sultan

Fiber composites are known to have poor through-thickness mechanical properties due to the absence of a Z-direction binder. This issue is more critical with the use of natural fibers due to their low strength compared to synthetic fibers. Stitching is a through-thickness toughening method that is used to introduce fibers in the Z-direction, which will result in better through-thickness mechanical properties. This research was carried out to determine the mechanical properties of unstitched and silk fiber-stitched woven kenaf-reinforced epoxy composites. The woven kenaf mat was stitched with silk fiber using a commercial sewing machine. The specimens were fabricated using a hand lay-up method. Three specimens were fabricated, one unstitched and two silk-stitched with deferent stitching orientations. The results show that the stitched specimens have comparable in-plane mechanical properties to the unstitched specimens. For the tensile mechanical test, stitched specimens show similar and 17.1% higher tensile strength compared to the unstitched specimens. The flexural mechanical test results show around a 9% decrease in the flexural strength for the stitched specimens. On the other hand, the Izod impact mechanical test results show a significant improvement of 33% for the stitched specimens, which means that stitching has successfully improved the out-of-plane mechanical properties. The outcome of this research indicates that the stitched specimens have better mechanical performance compared to the unstitched specimens and that the decrease in the flexural strength is insignificant in contrast with the remarkable enhancement in the impact strength.


2019 ◽  
pp. 089270571986461
Author(s):  
Kubra Coskun ◽  
Aysenur Mutlu ◽  
Mehmet Dogan ◽  
Ebru Bozacı

The effects of enzymatic treatments on the properties of coir fiber-reinforced poly(lactic acid) (PLA) were not found in the literature. Accordingly, the effects of various enzymatic treatments on the mechanical performance of the coir fiber-reinforced PLA composites were investigated in the current study. Four different enzymes, namely lipase, lactase, pectinase, and cellulase, were used. The mechanical properties of the composites were determined by the tensile, flexural, impact tests, and dynamic mechanical analysis. According to the test results, the use of enzyme treated coir fibers affected the mechanical properties except for the flexural properties with different extents depending upon their type. The tensile strength increased with the treatments of lipase and lactase, while the treatments with pectinase and cellulase had no remarkable effect. The impact strength was improved with enzymatic treatments except for pectinase. All enzymatic treatments improved the elastic modulus below the glass transition temperature. In brief, enzymatic treatments improved the interfacial adhesion between coir fiber and PLA via the waxes and fatty acids removal and/or the increment in surface roughness.


2013 ◽  
Vol 353-356 ◽  
pp. 20-23
Author(s):  
Xiao Lei Wang ◽  
Shun Xi Yan ◽  
Guang Can Zhang

According to the problemsof serious deformation of soft rock roadways and lack of system andcomprehensive study on surrounding rock characteristics and failure mechanismin Shajihai mining area, this paper carried out a series of mechanicalexperiments on the characteristics of surrounding rock in this area includinguniaxial compression test, triaxial compression test and water absorption propertiestest. Mechanical test results show that the compressive strength of surroundingrock of roadway is generally low, and mudstone compressive strength is thelargest which is 19.23 MPa, and compressive strength of the minimum is coalwhich is 11.32 MPa under natural condition. However sandstone and mudstone’sability of water absorbing is strong, and coal saturation strength issignificantly greater than that of mudstone and sandstone. Therefore, we shouldmake full use of the strength of coal in roadway layout and support design.


Sign in / Sign up

Export Citation Format

Share Document