Synthesis and characterization of a chalcone-derived epoxy containing pyrazoline ring with excellent flame resistance

2021 ◽  
pp. 095400832199352
Author(s):  
Yan-min-zi Zhang ◽  
Meng-yao Huang ◽  
Jun Zhou ◽  
Da-zhe Li ◽  
Yi Lei

Traditional epoxy resins are made by the reaction of petroleum-based bisphenol A and epichlorohydrin. The disadvantages of these petroleum-based epoxy including certain biological toxicity and flammability. To solve these problems, we first synthesized a diphenol compound 3,5-(4-hydroxyphenyl)-2-pyrazoline (TPP), which was prepared by condensation reaction of bio-based chalcone with hydrazine hydrate to replace standard petroleum-based bisphenol A. Then it was condensed with epichlorohydrin under alkaline condition to form a fully aromatic pyrazoline ring epoxy (TPP-EP). For further research, we use 4,4′-diaminodiphenylmethane (DDM) as the curing agent. When compared with bisphenol A epoxy resin (DGEBA/DDM), TPP-EP/DDM possessed a higher glass transition temperature (233°C vs. 176°C), and even showed that the residual carbon (in N2) and the storage modulus (at 30°C) increased by 201% and 74%, respectively. What’s more, TPP-EP/DDM system also had good inherent flame retardancy. The limiting oxygen index of TPP-EP/DDM was 33.1, reaching the V-0 level tested by UL-94. From the cone test, the THR, p-HRR, p-SPR and TSP values of TPP-EP/DDM systems also showed different degrees of reduction. Since TPP-EP contained tertiary amine active groups that could be used as a kind of catalytic curing agents for epoxy resins, thus the compound had certain self-curing properties. This work was of great significance for the synthesis of pyrazoline bio-based environmentally friendly flame-retardant epoxy resin.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2205
Author(s):  
Qian Li ◽  
Yujie Li ◽  
Yifan Chen ◽  
Qiang Wu ◽  
Siqun Wang

A novel liquid phosphorous-containing flame retardant anhydride (LPFA) with low viscosity was synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and methyl tetrahydrophthalic anhydride (MeTHPA) and further cured with bisphenol-A epoxy resin E-51 for the preparation of the flame retardant epoxy resins. Both Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR) measurements revealed the successful incorporation of DOPO on the molecular chains of MeTHPA through chemical reaction. The oxygen index analysis showed that the LPFA-cured epoxy resin exhibited excellent flame retardant performance, and the corresponding limiting oxygen index (LOI) value could reach 31.2%. The UL-94V-0 rating was achieved for the flame retardant epoxy resin with the phosphorus content of 2.7%. With the addition of LPFA, the impact strength of the cured epoxy resins remained almost unchanged, but the flexural strength gradually increased. Meanwhile, all the epoxy resins showed good thermal stability. The glass transition temperature (Tg) and thermal decomposition temperature (Td) of epoxy resin cured by LPFA decreased slightly compared with that of MeTHPA-cured epoxy resin. Based on such excellent flame retardancy, low viscosity at room temperature and ease of use, LPFA showed potential as an appropriate curing agent in the field of electrical insulation materials.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41954-41966 ◽  
Author(s):  
Samuel Malburet ◽  
Chiara Di Mauro ◽  
Camilla Noè ◽  
Alice Mija ◽  
Marco Sangermano ◽  
...  

Beyond the need to find a non-toxic alternative to DiGlycidyl Ether of Bisphenol-A (DGEBA), the serious subject of non-epichlorohydrin epoxy resins production remains a crucial challenge that must be solved for the next epoxy resin generations.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1914 ◽  
Author(s):  
Kireev ◽  
Bilichenko ◽  
Borisov ◽  
Mu ◽  
Kuznetsov ◽  
...  

Phosphazene-containing epoxy oligomers (PEO) were synthesized by the interaction of hexachlorocyclotriphosphazene (HCP), phenol, and bisphenol A in a medium of excess of epichlorohydrin using potassium carbonate and hydroxide as HCl acceptors with the aim of obtaining a product with lower viscosity and higher phosphazene content. PEOs are mixtures of epoxycyclophosphazene (ECP) and a conventional organic epoxy resin based on bisphenol A in an amount controlled by the ratio of the initial mono- and diphenol. According to 31P NMR spectroscopy, pentasubstituted aryloxycyclotrophosphazene compounds predominate in the ECP composition. The relative content in the ECP radicals of mono- and diphenol was determined by the MALDI-TOF mass spectrometry method. The organic epoxy fraction, according to gas chromatograpy-mass spectrometry (GC-MS), contains 50–70 wt % diglycidyl ether of bisphenol A. PEO resins obtained in the present work have reduced viscosity when compared to other known phosphazene-containging epoxy resins while phosphazene content is still about 50 wt %. Resins with an epoxy number within 12–17 wt %, are cured by conventional curing agents to form compositions with flame-retardant properties, while other characteristics of these compositions are at the level of conventional epoxy materials.


RSC Advances ◽  
2017 ◽  
Vol 7 (85) ◽  
pp. 53970-53976 ◽  
Author(s):  
Tianyi Na ◽  
Hao Jiang ◽  
Liang Zhao ◽  
Chengji Zhao

The novel naphthyl epoxy resin was synthesized and cured with MeHHPA. It showed significantly lower dielectric constant and dielectric loss than other commercial epoxy resins due to the introduction of fluorine on the side chains.


2020 ◽  
Vol 15 ◽  
pp. 155892502090132
Author(s):  
Sang-Hoon Lee ◽  
Seung-Won Oh ◽  
Young-Hee Lee ◽  
Il-Jin Kim ◽  
Dong-Jin Lee ◽  
...  

To prepare flame-retardant epoxy resin, phosphorus compound containing di-hydroxyl group (10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ) was reacted with uncured epoxy resin (diglycidyl ether of bisphenol A, YD-128) and then cured using a curing agent (dicyandiamide, DICY). This study focused on the effect of phosphorus compound/phosphorus content on physical properties and flame retardancy of cured epoxy resin. The thermal decomposition temperature of the cured epoxy resins (samples: P0, P1.5, P2.0, and P2.5, the number represents the wt% of phosphorus) increased with increasing the content of phosphorus compound/phosphorus (0/0, 19.8/1.5, 27.8/2.0, and 36.8/2.5 wt%) based on epoxy resin. The impact strength of the cured epoxy resin increased significantly with increasing phosphorus compound content. As the phosphorus compound/phosphorus content increased from 0/0 to 36.8/2.5 wt%, the glass transition temperature (the peak temperature of loss modulus curve) increased from 135.2°C to 142.0°C. In addition, as the content of phosphorous compound increased, the storage modulus remained almost constant up to higher temperature. The limiting oxygen index value of cured epoxy resin increased from 21.1% to 30.0% with increasing phosphorus compound/phosphorus content from 0/0 to 36.8/2.5 wt%. The UL 94 V test result showed that no rating for phosphorus compounds less than 19.8 wt% and V-1 for 27.8 wt%. However, when the phosphorus compound was 36.8 wt%, the V-0 level indicating complete flame retardancy was obtained. In conclusion, the incorporation of phosphorus compounds into the epoxy chain resulted in improved properties such as impact strength and heat resistance, as well as a significant increase in flame retardancy.


2013 ◽  
Vol 13 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Rajesh Pandit ◽  
Albrecht Berkessel ◽  
Ralf Lach ◽  
Wolfgang Grellmann ◽  
Rameshwar Adhikari

Polystyrene–polybutadiene block copolymers having different molecular architectures were epoxidized by using meta-chloroperoxybenzoic acid (MCPBA). Then, the blends with epoxy resin (diglycidyl ether of bisphenol-A; DGEBA) and their nanocomposites with boehmite and layered silicate nanofiller in presence of methylene dianiline (MDA) as a hardener were prepared. The epoxidized copolymers and the composites were characterized by Fourier transform infrared (FTIR) spectroscopy and microindentation technique. In this way, it was possible to tune the morphology of the nanostructured blends of the epoxy resin using the functionalized block copolymer as the template. The presence of nanostructured morphology was attested by the optical transparency of the blends as well as of the composites with nanofiller. The microhardness properties were improved by the incorporation of the nanoparticles, viz. boehmite and layered silicate. Nepal Journal of Science and Technology Vol. 13, No. 1 (2012) 81-88 DOI: http://dx.doi.org/10.3126/njst.v13i1.7445


2011 ◽  
Vol 236-238 ◽  
pp. 116-119
Author(s):  
Wen Ming Zhang ◽  
Yu Cang Zhang ◽  
De Feng Zhao

The liquefied corn barn-based epoxy resin (LCBER) was synthesised through the glycidyl etherification reaction from liquefied corn barn (LCB) had having groups of bound phenol and epichlorohydrine under alkali conditions. The average molecular weights of LCBER in various reaction conditions were examined. The extreme high molecular weight portion of LCBER-30 was obtained using LCB at 30 min as raw materials. The epoxy functionality of LCBER was controlled by the amount of bound phenol in LCB. LCBER was cured with polyamide-650 (PA-650) and the thermal and mechanical properties were evaluated. Comparing to the petroleum-based bisphenol-A type epoxy resin (DGEBA), LCBER presented higher adhesive shear strength and good thermal stability. These suggested that LCBER would be more suitable to glue biomass materials.


2012 ◽  
Vol 476-478 ◽  
pp. 665-669 ◽  
Author(s):  
Li Yang ◽  
Miao Yin ◽  
Xiu Yun Li ◽  
Han Bing Ma

In this paper, a type of nanoporous polyhedral oligomeric silisesquioxanes (POSS) containing eight functional groups have been synthesized and mixed with diglycidyl ether of bisphenol A (DGEBA) to form epoxy resin networks with nanostructures. The cured octa(aminophenyl) silsesquioxane (1c-POSS) and DGEBA system inherently possesses higher thermal stability and higher char yield than the control epoxy resins. Furthermore, the dielectric constant of the 1c-POSS/DGEBA material (4.36) is substantially lower than that of the neat epoxy resins (4.64) as a consequence the presence of nanoporous POSS cubes in the epoxy matrix.


2015 ◽  
Vol 1110 ◽  
pp. 69-72
Author(s):  
Fu Ke Wang ◽  
Chao Bin He

The dispersion and exfoliation of graphene oxides in polymer matrix remains a challenge for graphene oxides based epoxy nanocomposites fabrication. In the present paper, we reported a simple and facile solvent exchange technique to successfully transfer graphene oxides (GOs) from aqueous solution to ethanol. In addition, we found that GO dispersion in epoxy resins was affected by the curing agents. Good dispersion of GOs in epoxy resin together with enhanced thermal and mechanical properties were observed when epoxy was cured with aliphatic curing agents. For aromatic curing agent, high loading of GOs leaded to GOs aggregation, but well dispersed GOs was observed at low loading of GOs. Especially, a 12 °C increase of glass transition temperature of the epoxy resin was observed with only 0.1 wt% GOs was added to the epoxy resin.


Sign in / Sign up

Export Citation Format

Share Document