A new approach for pre-stressing of rail-end-bolt holes

Author(s):  
JT Maximov ◽  
GV Duncheva ◽  
IM Amudjev ◽  
AP Anchev ◽  
N Ganev

Bolted joint railroad is the subject matter of this paper. Rail joint elements are subjected to cyclic and impact loads as a result of the passage of trains, which causes the origination and growth of fatigue cracks occurring, in most cases, around the bolt holes. Fatigue failure around rail-end-bolt holes is particularly dangerous because it leads to derailment of trains and, consequently, to inevitable accidents. Moreover, the cracking at rail-ends, which starts from bolt hole surface, causes premature rails replacement. The presence of residual compressive hoop stresses around the bolted holes, which is achieved by prestressing of these holes, extends the fatigue life of bolted joint railroads. This article presents an innovative technology for pre-stressing of rail-end-bolt holes, implemented on a vertical machining centre of Revolver vertical (RV) type. Two consecutive operations are involved in the manufacturing technology process: formation of the hole by drilling, reaming and making of a chamfer through a new combined cutting tool; cold hole working by spherical motion cold working through a new tool equipment, which minimizes the axial force on the reverse stroke. The new technology introduces beneficial residual compressive stresses around the bolted holes thereby preventing the fatigue cracks growth and increasing the fatigue life of these openings.

Author(s):  
Jianwei Zhou ◽  
Wei Zheng ◽  
Taekoo Lee

Abstract Multi-Chip Package (MCP) decapsulation is now becoming a rising problem. Because for traditional decapsulation method, acid can’t dissolve the top silicon die to expose the bottom die surface in MCP. It makes inspecting the bottom die in MCP is difficult. In this paper, a new MCP decapsulation technology combining mechanical polishing with chemical etching is introduced. This new technology can remove the top die quickly without damaging the bottom die using KOH and Tetra-Methyl Ammonium Hydroxide (TMAH). The technology process and relative application are presented. The factors that affect the KOH and TMAH etch rate are studied. The usage difference between the two etchant is discussed.


2017 ◽  
Vol DC CPS 2017 (01) ◽  
pp. 22-26 ◽  
Author(s):  
Elsie Chidinma Anderson ◽  
A. A. Obayi ◽  
K.C. Okafor

The swiftly growing urban population of Nigeria is generating lots of tension in the cities in line with the rapid increase of vehicles. This is due to hitherto reliance on the present parking system which has no standard to check for parking spaces, hence generating problems such as traffic congestion, time wastage in search of parking slot, fuel consumption/CO emission, insecurity of vehicles etc. This work presents a quantitative statistical survey analysis conducted in selected metropolitan cities in Port Harcourt, Nigeria. The aim is to create awareness on Smart Car Parking System (SCPS) for heterogeneous clustered environments. The results of the conducted analysis showed that the awareness of this innovative technology is still at its tender stage in Nigeria. Findings shows that people are willing to adopt this new technology to assist in overcoming the challenges faced in the present parking system that is unstructured. A brief description of proposed SCPS based on Big data hardware is presented.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 476 ◽  
Author(s):  
Chao Gu ◽  
Min Wang ◽  
Yanping Bao ◽  
Fuming Wang ◽  
Junhe Lian

The fatigue property is significantly affected by the inner inclusions in steel. Due to the inhomogeneity of inclusion distribution in the micro-scale, it is not straightforward to quantify the effect of inclusions on fatigue behavior. Various investigations have been performed to correlate the inclusion characteristics, such as inclusion fraction, size, and composition, with fatigue life. However, these studies are generally based on vast types of steels and even for a similar steel grade, the alloy concept and microstructure information can still be of non-negligible difference. For a quantitative analysis of the fatigue life improvement with respect to the inclusion engineering, a systematic and carefully designed study is still needed to explore the engineering dimensions of inclusions. Therefore, in this study, three types of bearing steels with inclusions of the same types, but different sizes and amounts, were produced with 50 kg hot state experiments. The following forging and heat treatment procedures were kept consistent to ensure that the only controlled variable is inclusion. The fatigue properties were compared and the inclusions that triggered the fatigue cracks were analyzed to deduce the critical sizes of inclusions in terms of fatigue failure. The results show that the critical sizes of different inclusion types vary in bearing steels. The critical size of the spinel is 8.5 μm and the critical size of the calcium aluminate is 13.5 μm under the fatigue stress of 1200 MPa. In addition, with the increase of the cleanliness of bearing steels, the improvement of fatigue properties will reach saturation. Under this condition, further increasing of the cleanliness of the bearing steel will not contribute to the improvement of fatigue property for the investigated alloy and process design.


2006 ◽  
Vol 524-525 ◽  
pp. 153-158 ◽  
Author(s):  
Matthew E. Fox ◽  
Philip J. Withers

The residual stresses around clearance-fit mechanical fasteners have been found to be similar to those around cold expanded holes where compressive hoop stresses close to the fastener hole are balanced by far-field tensile stresses. This compressive zone has been shown to prolong fatigue lifetimes around fastener holes. Constant amplitude fatigue loading was applied to single plate rivet specimens for varying numbers of cycles to investigate the redistribution of these stresses after fatiguing. Synchrotron diffraction was used to map the evolution of the residual stresses around the rivets. Little change in the hoop stress local to the rivets occurred until visible fatigue cracks were observed suggesting that relaxation of these stresses is due to the cracks rather than their cause.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Pavlo Maruschak ◽  
Sergey Panin ◽  
Iryna Danyliuk ◽  
Lyubomyr Poberezhnyi ◽  
Taras Pyrig ◽  
...  

AbstractThe study has established the main regularities of a fatigue failure of offshore gas steel pipes installed using S-lay and J-lay methods.We have numerically analyzed the influence of preliminary deformation on the fatigue life of 09Mn2Si steel at different amplitudes of cyclic loading. The results have revealed the regularities of formation and development of a fatigue crack in 17Mn1Si steel after 40 years of underground operation. The quantitative analysis describes the regularities of occurrence and growth of fatigue cracks in the presence of a stress concentration.


2021 ◽  
Vol 23 (4) ◽  
pp. 65-78
Author(s):  
Sergey Vasiliev ◽  
◽  
Viktor Alekseev ◽  
Alyona Fedorova ◽  
Dmitry Lobanov ◽  
...  

Introduction. The technology of investigation of screw propellers complex surfaces, which include the marine and aircraft propellers of vehicles, mechatronic profilers for the implementation of reverse engineering, is considered. A review of the scientific literature shows that at present the problem of monitoring complex surfaces of products at various stages of its life cycle requires further research, since the use of available devices and methods does not always provide the necessary accuracy, technological effectiveness and sufficient information on measurements. The purpose of the work is to develop a new technology for studying complex surfaces of propellers, which include marine and aircraft propellers of vehicles by means of a mechatronic profilograph to implement reverse engineering. Methods. The paper considers the implementation of the innovative technology for studying complex surfaces of propellers using the developed mechatronic profilograph. This ingenious mechatronic profilograph is designed to measure the profile and study the shape of complex surfaces of various products, as well as to determine the geometric and morphological parameters of these surfaces. On the basis of theoretical studies the main design and technological parameters are found and the hyperbolic dependence of the angular rate of the laser sensor movement on the scanning radius is determined for the developed mechatronic profilograph. For example, if a constant pitch of the trajectory along the Archimedes spiral is 2 mm, the value of the sensor angular rate should gradually decrease from the maximum value of 2 rad/s to the minimum value of 0.574 rad/s, i.e. by 3.484 times. Results and discussion. It is revealed that the use of cylindrical coordinates for processing the obtained data by a profilograph is logical and has a number of advantages. An express analysis of the propeller surfaces with rotary symmetry is carried out and differences in the shapes of the surfaces of the propeller blades by deviation values in the longitudinal and transverse directions for different radii are established. On the basis of the experimental data, a two-factor power model describing deviations with a determination coefficient of 0.967 is obtained, according to its analysis, it is clear that on average the angle of deviation in the perpendicular direction to the radius  - increases from 0 to 0.3, and the angle of deviation along the radius  increases from 0 to 5.4.


Author(s):  
Zi Li ◽  
Bharath Basti Shenoy ◽  
L. Udpa ◽  
Yiming Deng

Abstract Martensitic grade stainless steel is generally used to manufacture steam turbine blades in power plants. The material degradation of those turbine blades, due to fatigue, will induce unexpected equipment damage. Fatigue cracks, too small to be detected, can grow severely in the next operating cycle and may cause failure before the next inspection opportunity. Therefore, a nondestructive electromagnetic technique, which is sensitive to microstructure changes in the material, is needed to provide a means to estimate the specimen’s fatigue life. To tackle these challenges, this paper presents a novel Magnetic Barkhausen noise (MBN) technique for garnering information relating to the material microstructure changes under test. The MBN signals are analyzed in time as well as frequency domain to infer material information that are influenced by the samples’ mate- rial state. Principal Component Analysis (PCA) is applied to reduce the dimensionality of feature data and extract higher order features. Afterwards, Probabilistic Neural Network (PNN) classifies the sample based on the percentage fatigue life to discover the most correlated MBN features to indicate the remaining fatigue life. Furthermore, one criticism of MBN is its poor repeatability and stability, therefore, Analysis of Variance (ANOVA) is carried out to analyze the uncertainty associated with MBN measurements. The feasibility of MBN technique is investigated in detecting early stage fatigue, which is associated with plastic deformation in ferromagnetic metallic structures. Experimental results demonstrate that the Magnetic Barkhausen Noise technique is a promising candidate for characterizing.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5536
Author(s):  
David Curto-Cárdenas ◽  
Jose Calaf-Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada ◽  
Maria-Jose Garcia-Tarrago

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 515-528
Author(s):  
Ruby Roberts ◽  
Rhona Flin

Summary To maximize the opportunities for the adoption of newly developed products, there is a need to better understand how psychological factors have an impact on the acceptance and deployment of innovative technology in industry. While there is extensive general literature on the psychological factors that influence consumer behavior and the use of new technologies, there seemed to be very limited understanding of this topic, specifically relating to the upstream energy sector. A literature review was conducted to (1) identify what, if any, research has been conducted in relation to the psychological factors influencing technology adoption and deployment in the oil and gas (O&G) industry and (2) identify what interventions have been developed to support technology adoption in O&G. A literature search was undertaken, and given the limited research anticipated, minimum selection criteria were applied on the basis of Cochrane quality control (Higgins and Green 2011). In the 17 articles that met the search criteria, there was limited discussion of the psychological factors that have an impact on O&G technology adoption. The articles were subject to Braun and Clarke (2006) thematic analysis, producing a list of psychological factors that influence technology adoption in O&G. Only five psychological factors were identified: personality (e.g., exploration traits and risk aversion), attitude (e.g., trust and not-invented-here syndrome), social (e.g., social norms), cognition (e.g., risk perception), and psychological factors at an organizational level (leadership and organizational culture). In addition, our review identified a small number of interventions that were developed and deployed to support technology adoption in O&G. Given the early stages of this research area, combined with the relevance for technology innovation in upstream O&G, our review adds to the literature by identifying an initial framework of the key psychological factors. This essential set of factors can be used to direct future research, as well as to support effective interventions aimed at supporting the introduction of new technology.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 495
Author(s):  
Ruslan Sikhamov ◽  
Fedor Fomin ◽  
Benjamin Klusemann ◽  
Nikolai Kashaev

The objective of the present study was to estimate the influence of laser shock peening on the fatigue properties of AA2024-T3 specimens with a fastener hole and to investigate the possibility to heal the initial cracks in such specimens. Fatigue cracks of different lengths were introduced in the specimens with a fastener hole before applying laser shock peening. Deep compressive residual stresses, characterized by the hole drilling method, were generated into the specimens by applying laser shock peening on both sides. Subsequently, the specimens were subjected to fatigue tests. The results show that laser shock peening has a positive effect regarding the fatigue life improvement in the specimens with a fastener hole. In addition, laser shock peening leads to a healing effect on fatigue cracks. The efficiency of this effect depends on the initial crack length. The effect of laser shock peening on the fatigue life periods was determined by using resonant frequency graphs.


Sign in / Sign up

Export Citation Format

Share Document