Research on composite bending stress of asymmetric gear in consideration of friction

Author(s):  
Shuai Mo ◽  
Shuai Ma ◽  
Guoguang Jin

Compared with the conventional gear, the asymmetric gear has better root bending stress and tooth contact stress. Taking a pair of asymmetric involute spur gears as the research object, a model of asymmetric gear considering the influence of friction and shear stress on root bending stress is established. Take the upper boundary point of single tooth meshing area as example, the formula for calculating root bending stress of asymmetric gear is deduced under friction, get the rule of root bending stress without neglecting the friction force and the shear stress by MATLAB. At the same time, we design the plane finite element model of conventional gear (20°/20°) and asymmetric gear (20°/35°) by using APDL. The upper and lower boundary points of the double tooth meshing area, the upper and lower boundary points of the single tooth meshing area, the meshing node are systematically studied, get the change rules of root bending stress in the meshing process under the condition that the friction force cannot be ignored.

2014 ◽  
Vol 592-594 ◽  
pp. 2292-2296 ◽  
Author(s):  
P. Marimuthu ◽  
G. Muthuveerappan

The aim of this paper is to determine the effect on direct design asymmetric high contact ratio spur gear based on tooth load sharing. A unique Ansys parametric design language code is developed for this study. The load sharing based bending and contact stresses are determined for different drive side contact ratios. In addition to that the location of critical loading point is determined. Because the critical loading point for high contact ratio spur gear not lies on fixed point like normal contact ratio spur gears namely highest point of single tooth contact. In conclusion an increase in drive side contact ratio leads to increase in the load sharing based bending stress and decrease in the contact stress at the critical loading point.


2011 ◽  
Vol 199-200 ◽  
pp. 354-357 ◽  
Author(s):  
Peng Zheng ◽  
Le Tang ◽  
Zhan Li Jiang

A gear’s finite-element model has been set up according to the parameter functions of the involute and tooth root curve, single and double tooth meshing region have been obtained according to the results of contact analysis. A tooth root’s bending stress has been calculated when meshing in the ultimate position in single tooth meshing region, and this stress has been contrasted with the results of a classical method as the maximum of a circle. The results of theoretical method were far away from that of finite-element calculation before being modified and were a little larger than the later after being modified. Reasons leading to this difference have been analyzed.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


2016 ◽  
Vol 835 ◽  
pp. 649-653
Author(s):  
Yuan Yuan Ding ◽  
Shi Long Wang ◽  
Zhi Jun Zheng ◽  
Li Ming Yang ◽  
Ji Lin Yu

A 3D cell-based finite element model is employed to investigate the dynamic biaxial behavior of cellular materials under combined shear-compression. The biaxial behavior is characterized by the normal stress and shear stress, which could be determined directly from the finite element results. A crush plateau stress is introduced to illustrate the critical crush stress, and the result shows that the normal plateau stress declines with the increase of the shear plateau stress, which climbs with the increase of loading angle. An elliptical criterion of normal plateau stress vs. shear plateau stress is obtained by the nonlinear regression method.


2002 ◽  
Vol 48 (163) ◽  
pp. 552-558 ◽  
Author(s):  
Marjorie Schmeltz ◽  
Eric Rignot ◽  
Todd K. Dupont ◽  
Douglas R. MacAyeal

AbstractWe use a finite-element model of coupled ice-stream/ice-shelf flow to study the sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions. By tuning a softening coefficient of the ice along the glacier margins, and a basal friction coefficient controlling the distribution of basal shear stress underneath the ice stream, we are able to match model velocity to that observed with interferometric synthetic aperture radar (InSAR). We use the model to investigate the effect of small perturbations on ice flow. We find that a 5.5–13% reduction in our initial ice-shelf area increases the glacier velocity by 3.5–10% at the grounding line. The removal of the entire ice shelf increases the grounding-line velocity by > 70%. The changes in velocity associated with ice-shelf reduction are felt several tens of km inland. Alternatively, a 5% reduction in basal shear stress increases the glacier velocity by 13% at the grounding line. By contrast, softening of the glacier side margins would have to be increased a lot more to produce a comparable change in ice velocity. Hence, both the ice-shelf buttressing and the basal shear stress contribute significant resistance to the flow of Pine Island Glacier.


Author(s):  
J Vander Sloten ◽  
G van der Perre

A realistic three-dimensional finite element model of the proximal femur requires the use of irregularly shaped elements to represent this geometry, unless the geometry is considerably simplified. The authors have investigated the influence of different types of element distortions upon the accuracy of two stresses which are relevant in the proximal femur: the bending stress and the tangential (hoop) stress. While most angular and geometric distortions did not influence the bending stress significantly, the position of the middle node on the edge of a quadratic element was very critical, as were some types of element skewness. The hoop stresses can only be calculated accurately if the geometry is modelled as well as possible by a cylinder, and not by a cone.


2021 ◽  
Author(s):  
Oguz DOGAN ◽  
Celalettin YUCE ◽  
Fatih KARPAT

Abstract Today, gear designs with asymmetric tooth profiles offer essential solutions in reducing tooth root stresses of gears. Although numerical, analytical, and experimental studies are carried out to calculate the bending stresses in gears with asymmetric tooth profiles a standard or a simplified equation or empirical statement has not been encountered in the literature. In this study, a novel bending stress calculation procedure for gears with asymmetric tooth profiles is developed using both the DIN3990 standard and the finite element method. The bending stresses of gears with symmetrical profile were determined by the developed finite element model and was verified by comparing the results with the DIN 3990 standard. Using the verified finite element model, by changing the drive side pressure angle between 20° and 30° and the number of teeth between 18 and 100, 66 different cases were examined and the bending stresses in gears with asymmetric profile were determined. As a result of the analysis, a new asymmetric factor was derived. By adding the obtained asymmetric factor to the DIN 3390 formula, a new equation has been derived to be used in tooth bending stresses of gears with asymmetric profile. Thanks to this equation, designers will be able to calculate tooth bending stresses with high precision in gears with asymmetric tooth profile without the need for finite element analysis.


1999 ◽  
Vol 122 (3) ◽  
pp. 384-390 ◽  
Author(s):  
Jairam Manjunathaiah ◽  
William J. Endres

A new machining process model that explicitly includes the effects of the edge hone is presented. A force balance is conducted on the lower boundary of the deformation zone leading to a machining force model. The machining force components are an explicit function of the edge radius and shear angle. An increase in edge radius leads to not only increased ploughing forces but also an increase in the chip formation forces due to an average rake angle effect. Previous attempts at assessing the ploughing components as the force intercept at zero uncut chip thickness, which attribute to the ploughing mechanism all the changes in forces that occur with changes in edge radius, are seen to be erroneous in view of this model. Calculation of shear stress on the lower boundary of the deformation zone using the new machining force model indicates that the apparent size effect when cutting with edge radiused tools is due to deformation below the tool (ploughing) and a larger chip formation component due to a lower shear angle. Increases in specific energy and shear stress are also due to shear strain and strain rate increases. A consistent material behavior model that does not vary with process input conditions like uncut chip thickness, rake angle and edge radius can be developed based on the new model. [S1087-1357(00)01302-2]


Author(s):  
Yuan Mao Huang

This study analyzes the loads of a needle by using singularity functions and determines the Von-Mises stresses to predict the failure modes of needles by using a personal computer. After principal stresses are calculated from the bending stress, compressive stress and shear stress, predicted failure modes of needles based on the Von-Mises stress coincide with practical existing failure modes reported by a manufacturer. These calculated stresses are also compared with the results obtained by using the software ABAQUS in the mainframe, and the deviation between the results calculated by these two methods is also investigated. Using this methodology can obtain loads, stresses and failure modes of a needle with acceptable accuracy while reducing the cost of using the commercial software in the mainframe.


Author(s):  
Shadab Siddiqui ◽  
Nagaraj K. Arakere ◽  
Fereshteh Ebrahimi

A comprehensive numerical investigation of plasticity (slip) evolution near notches was conducted at 28°C and 927°C, for two crystallographic orientations of double-notched single crystal nickel base superalloys (SCNBS) specimens. The two specimens have a common loading orientation of <001> and have notches parallel to the <010> (specimen I) and <110> (specimen II) orientation, respectively. A three dimensional anisotropic linear elastic finite element model was employed to calculate the stress field near the notch of these samples. Resolved shear stress values were obtained near the notch for the primary octahedral slip systems ({111} <110>) and cube slip systems ({100} <110>). The effect of temperature was incorporated in the model as changes in the elastic modulus values and the critical resolved shear stress (CRSS). The results suggest that the number of dominant slip systems (slip systems with the highest resolved shear stress) and the size and the shape of the plastic zones around the notch are both functions of the orientation as well as the test temperature. A comparison between the absolute values of resolved shear stresses near the notch at 28°C and 927°C on the {111} slip planes revealed that the plastic zone size and the number of activated dominant slip systems are not significantly affected by the temperature dependency of the elastic properties of the SCNBS, but rather by the change in critical resolved shear stress of this material with temperature. The load required to initiate slip was found to be lower in specimen II than in specimen I at both temperatures. Furthermore, at 927°C the maximum resolved shear stress (RSS) on the notch surface was found to be greater on the {100} slip planes as compared with the {111} slip planes in both specimens. The results from this study will be helpful in understanding the slip evolution in SCNBS at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document