Longitudinal–torsional ultrasonic vibration-assisted side milling process

Author(s):  
Chenjun Wu ◽  
Shijin Chen ◽  
Caiwei Xiao ◽  
Kai Cheng ◽  
Hui Ding

In this paper, a longitudinal–torsional ultrasonic vibration-assisted side milling is investigated. Different from the continuous cutting process in conventional side milling, the longitudinal–torsional ultrasonic vibration milling process is high-frequency intermittent. The intermittent cutting process is caused by the helical trajectory of the cutting edge. A mathematical model is established to simulate the trajectory and then the high-frequency intermittent cutting process is analyzed based on the model. Spindle speed, helix angle of milling tool, and ultrasonic vibration amplitudes are found to be the factors that are responsible for the ultrasonic cutting effect. When the spindle speed is 1500 r/min and the helical angle of milling tool is 30°, ultrasonic vibration milling experiments have shown that the cutting force can be reduced by 45.8% in the x direction at the most, 27.6% in the y direction, and 48% in the z direction compared to conventional milling. The experimental results also show that the decrement of the cutting force decreases along with the increasing of the cutting speed and helical angle of milling tool due to the decrease of the uncutting time. However, the increasing of the vibration amplitude can increase the decrement.

2021 ◽  
Author(s):  
Zhongqun Li ◽  
Jiandong Xiao Xiao ◽  
Xiong HAN ◽  
Weifeng ZHANG

Abstract Elliptical ultrasonic vibration-assisted milling (EUVAM) adds high-frequency vibration to conventional milling (CM) to realize high-frequency intermittent milling. It has broad application prospects in the processing of difficult-to-cut materials such as titanium alloys, superalloys and hard and brittle materials. To reveal the mechanism of the highly intermittent cutting nature in EUVAM, according to the motion relationship between cutting edge and workpiece and the Z-map model of the workpiece, a method and its algorithm for calculating undeformed cutting thickness and thus the cutting force in EUVAM are proposed. The simulation results show that EUVAM can improve the actual cutting speed when compared with CM, and the proportion of idle cutting time will directly determine the intermittent degree of the milling process. The experiment of EUVAM is performed to verify the correctness of the proposed cutting force model, and the impact of spindle speed on the cutting force in EUVAM is also analyzed.


2021 ◽  
Author(s):  
Weibo Xie ◽  
Xikui Wang ◽  
Erbo Liu ◽  
Jian Wang ◽  
Xiaobin Tang ◽  
...  

Abstract In order to study the influence of rotational speed and amplitude on the surface integrity, TC18 titanium alloy samples were milled by the process of conventional milling and longitudinal ultrasonic vibration assisted milling. The experimental data were obtained by dynamometer, thermometer, scanning electron microscope, X-ray diffractometer and three-dimensional surface topography instrument for observation and analysis. The results show that the rotational speed has a significant effect on the cutting force, cutting temperature, surface morphology and surface residual stress. Compared with ordinary milling, the surface micro-texture produced by ultrasonic vibration milling is more regular, , and with the increase of rotational speed, the influence of ultrasonic vibration on cutting force and cutting temperature decrease. There are adverse effects on surface roughness after ultrasonic vibration superposition. The influence of ultrasonic vibration on the surface residual compressive stress is also greatly reduced when the rotational speed is greater than 2400 rpm. In addition, a certain depth of plastic deformation layer can be formed under the surface of ultrasonic vibration machining, and the depth of deformation layer increases with the increase of vibration.


2016 ◽  
Vol 693 ◽  
pp. 843-849
Author(s):  
An Hai Li ◽  
Jun Zhao ◽  
He Lin Pan ◽  
Zhao Chao Gong

In order to acquire high machining quality and minimum machining time, cutting forces are usually modeled to understand the milling process, simulate or predict cutting forces, and optimize the machining parameters. In this paper, side milling tests were conducted on superalloy Inconel 718 with a solid carbide end mill, and the cutting forces vs. cutting time were measured. The average cutting forces were extracted from the measured instantaneous cutting forces under different feed rates of experiments, and the components of the shear forces and edge forces were determined by using the linear regression of the experimental data. The cutting force coefficients, including shear force coefficients and edge force coefficients, were identified. In addition, the algorithms of the mathematical model were implemented in Matlab. The predicted cutting forces were in good agreement with the experimentally measured forces, and the validation of the cutting force model was demonstrated.


2021 ◽  
Vol 15 (4) ◽  
pp. 457-465
Author(s):  
Hiromi Isobe ◽  
Masatoshi Okuda ◽  
Keisuke Hara ◽  
Jun Ishimatsu ◽  
◽  
...  

The aim of this study is to investigate the dynamic phenomenon of ultrasonic vibration-assisted cutting by utilizing a stress distribution visualization system. The vibrating cutting-edge is considered to be a cause of dynamic changes in the cutting force at ultrasonic frequencies. However, many researchers have explained the effect of ultrasonic vibration-assisted cutting by evaluating the time-averaged cutting force, because existing dynamometers are unable to measure the dynamically changing cutting force at ultrasonic frequencies. There are some reports that the vibration direction of cutting edge strongly affects tool wear. However, in practical ultrasonic cutting, the vibration of the cutting edge has yet to be measured in a production environment. In this study, the instantaneous stress distribution on the workpiece was visualized by a photoelastic method that combines a pulsed laser emission synchronized with tool vibration. The developed photographic system can capture 360 frames in one ultrasonic vibration period. The dynamic cutting force was calculated by Flamant’s stress distribution theory. It was experimentally confirmed that the stress distribution under vibration-assisted conditions showed periodical changes synchronized with vibration. Because these results are compatible with well-known vibration-cutting theories, the imaging system was able to show the periodic changes in stress distribution in the ultrasonic frequency band. This indicates that the dynamic change in cutting force during the ultrasonic vibration period affects intermittent cutting conditions. In this report, the vibration direction was adjusted from −9.5° to +9.5° along the cutting direction. When the tool moved in upwards for the cutting phase and downwards for withdrawal phase, the stress distribution was continuously observed over one tool vibration period; no intermittent cutting was observed. The locus of the cutting force vector was affected by the ultrasonic vibration direction and rake angle of the cutting tool. A negative rake angle showed that the direction of the cutting force vector shifted toward the workpiece side near the most advanced position of the cutting edge.


2017 ◽  
Vol 868 ◽  
pp. 158-165 ◽  
Author(s):  
Yu Zhi Chen ◽  
Wei Fang Chen ◽  
Rui Jun Liang ◽  
Ting Feng

Multilayer cutting is widely used in finish machining process of thin-walled parts to improve the machining precision. The paper presents a cutting allowance optimization method using genetic algorithm to improve the machining quality and efficiency of thin-walled parts in the field of aerospace. Considering the coupling relationship of the deformation between the layers in layered milling, the parameterized finite element model of thin-walled parts in side milling process is established. The best relationship between the workpiece stiffness and the cutting force is determined though iterative calculations, and the deformation caused by the cutting force can be minimized. The results show that the optimized distribution of the depth of finishing cutting was better than the experience. The method proposed in this paper can reduce the deformation of the workpiece during the machining process, and thus improve the machining accuracy.


Author(s):  
Saeid Amini ◽  
Mohammad Baraheni ◽  
Mohammad Khaki

Turn-milling process has been paid attention in order to be used in multi-task machining processes. Moreover, looking for new machining techniques aimed at reducing cutting force is of important. Reducing cutting force in machining processes has the benefits of extending tool life and improving surface quality. One of the new concepts for reducing the cutting force is applying ultrasonic vibration. In this paper, effects of ultrasonic vibration under different machining parameters in turn-milling process of Al-7075 alloy will be investigated. In this order, a special mechanism was designed to apply ultrasonic vibration during machining process. Ultrasonic vibration exertion on the tool reduced cutting force and surface roughness up to 75% and 35%, respectively. Also tool rotational speed increment induced cutting force and surface roughness increment. In addition, tool feed rate and workpiece rotational speed increment caused cutting force and surface roughness increment. Although, feed rate was more influential.


2019 ◽  
Vol 13 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Hiroyasu Iwabe ◽  
Mitunori Hiwatashi ◽  
Masahiko Jin ◽  
Hidenari Kanai ◽  
◽  
...  

This paper is focused on the cutting performance in the side milling of a small-size end mill with vibrations generated by an ultrasonic vibration spindle apparatus in the axial direction with a helix edge. In side milling with ultrasonic vibration in the rotational direction, the mean value of the cross-sectional chip area per cutting time decreases owing to the frequent repetition of the cutting and non-cutting phases. As a result, the cutting force decreases and provides an optimal cutting performance as compared to that in conventional side milling. First, the cross-sectional chip area is calculated using three-dimensional computer aided design (CAD) with its mean value relative to the cutting time. The ultrasonic vibration spindle apparatus is then attached to the machine spindle, and cutting tests are performed for conventional and ultrasonic vibration machining. Next, the flank wear, surface roughness, cutting force, and residual stress are measured. The results obtained from the cutting tests of the two machining methods are compared. The main results are as follows: (1) A comparison of the flank wears of conventional machining and ultrasonic vibration machining shows that the former is larger than the latter. The maximum flank wear increases as the cutting length increases for both the machining methods. (2) The maximum height of the machined surface in ultrasonic vibration machining is larger than that in conventional machining because of the marks caused by ultrasonic vibration. (3) The mean cross-sectional chip area relative to the cutting time decreases with ultrasonic vibration machining and the tool deformation decreases with a decrease in the mean cutting force relative to the cutting time. (4) With ultrasonic vibration machining, residual stress is generated on the machined surface not only in the feed direction but also in the axial direction because of the repetitive sliding actions in the axial direction of the flank of the cutting edge.


2012 ◽  
Vol 252 ◽  
pp. 198-201 ◽  
Author(s):  
Dao Hui Xiang ◽  
Hai Tao Liu ◽  
Xiao Jiang ◽  
Song Liang ◽  
Guang Bin Yang

Abstract: High volume fraction SiCp/Al composites were milled in ultrasonic longitudinal high frequency vibration milling and conventional milling in this experiment. Meanwhile, the form of wear and wear mechanism of PCD milling tools were investigated. In addition, the relationship between the maximum wear of PCD milling tool and the length of milling were obtained. The results show that it is mainly flank wear of PCD cutting tool under the same milling parameters, which are caused due to hard points wear and thermal and chemical wear. Furthermore, the wear of PCD cutting tool by the ultrasonic vibration milling is smaller than that obtained by the conventional milling.


2016 ◽  
Vol 693 ◽  
pp. 1030-1037
Author(s):  
Xue Hui Shen ◽  
Ming Yu Wang

The purpose of this paper is to investigate the variation of temperature field of ultrasonic vibration assisted milling compared with that of conventional milling by FEM method. An equivalent two-dimensional finite element model was built to simplify the complexity of calculation. As results, the temperature field distribution, the variation of tool tip temperature and the change of heat generation rate in ultrasonic vibration assisted milling were analyzed compared with that in conventional milling process. According to analytical results, the application of ultrasonic vibration in milling process can significantly improve the distribution of cutting temperature, and reduce the impacts of thermal deformation and various thermal effects to cutting process.


Sign in / Sign up

Export Citation Format

Share Document