Tunable-focus liquid lens actuated by a novel piezoelectric motor

Author(s):  
Hanlu Li ◽  
Weihao Ren ◽  
Lin Yang ◽  
Chengcheng Ma ◽  
Siyu Tang ◽  
...  

In this paper, a tunable-focus liquid lens driven by a novel piezoelectric motor is proposed for the adaptive application. Compressing the liquid chamber, the curvature of the lens can be changed by increasing the liquid pressure. This mechanism requires the motor to provide a vertical force to deform the lens surface, whose curvature can be decreased and thereby increasing its focus. As a key part of the tunable-focus liquid lens, a novel piezoelectric motor with the compact structure is emphatically developed in this paper. The operation process of the motor is discussed in detail, whose geometrical parameters are calculated by the finite element simulations. And the motor prototype is then fabricated and tested by the experimental platform. The testing results indicate that the motor can operate steadily and continuously, whose maximum linear velocity can reach 0.065 mm/s under the frequency of 11.80 kHz and voltage of 400 [Formula: see text]. The measurement shows that the proposed lens driven by the piezoelectric motor can zoom ranged from 9.6 mm to 17.9 mm, which is suitable for adaptive eyeglass application. Compared with other liquid lens, the prototype with a compact structure, easy and low cost fabrication process can provide high-precision adjustment within a certain range. The presented device exhibits well zooming characteristic and stability in the experiment, which also realizes the successful application of piezoelectric motor in the liquid-lens. It shows greatly potential in the adaptive eyeglasses, and may be employed as the mobile system in the near future.

Author(s):  
Roberto J. López-Sastre ◽  
Marcos Baptista-Ríos ◽  
Francisco Javier Acevedo-Rodríguez ◽  
Soraya Pacheco-da-Costa ◽  
Saturnino Maldonado-Bascón ◽  
...  

In this paper, we present a new low-cost robotic platform that has been explicitly developed to increase children with neurodevelopmental disorders’ involvement in the environment during everyday living activities. In order to support the children and youth with both the sequencing and learning of everyday living tasks, our robotic platform incorporates a sophisticated online action detection module that is capable of monitoring the acts performed by users. We explain all the technical details that allow many applications to be introduced to support individuals with functional diversity. We present this work as a proof of concept, which will enable an assessment of the impact that the developed technology may have on the collective of children and youth with neurodevelopmental disorders in the near future.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 49
Author(s):  
Hélida Gomes de Oliveira Barud ◽  
Robson Rosa da Silva ◽  
Marco Antonio Costa Borges ◽  
Guillermo Raul Castro ◽  
Sidney José Lima Ribeiro ◽  
...  

Bacterial cellulose (BC) is a natural polymer that has fascinating attributes, such as biocompatibility, low cost, and ease of processing, being considered a very interesting biomaterial due to its options for moldability and combination. Thus, BC-based compounds (for example, BC/collagen, BC/gelatin, BC/fibroin, BC/chitosan, etc.) have improved properties and/or functionality, allowing for various biomedical applications, such as artificial blood vessels and microvessels, artificial skin, and wounds dressing among others. Despite the wide applicability in biomedicine and tissue engineering, there is a lack of updated scientific reports on applications related to dentistry, since BC has great potential for this. It has been used mainly in the regeneration of periodontal tissue, surgical dressings, intraoral wounds, and also in the regeneration of pulp tissue. This review describes the properties and advantages of some BC studies focused on dental and oral applications, including the design of implants, scaffolds, and wound-dressing materials, as well as carriers for drug delivery in dentistry. Aligned to the current trends and biotechnology evolutions, BC-based nanocomposites offer a great field to be explored and other novel features can be expected in relation to oral and bone tissue repair in the near future.


2021 ◽  
pp. 71-72
Author(s):  
Adamu, B. ◽  
Abdullahi, S. ◽  
Saidu, S. G ◽  
Yustus Sunday Francis

The term 'Hydroponics' was derived from Greek words 'hydro' means water and 'ponics' means labor. Hydroponic is a modern agricultural technique that uses nutrient solution rather than soil solution for fodder production. As population increases the food demand also increased, the existing system of agriculture will not be able to meet the food requirement in the near future due to environmental challenges in the industry. The major environmental factors affecting the hydroponics production system are; Temperature, relative humidity, and light. The objectives of this studies are to examine the hydroponics greenhouse technologies, impact of environmental factors on hydroponics greenhouse cultivation and challenges of growing on hydroponics greenhouse system. This study revealed that hydroponics greenhouse cultivation is a better option for improved fodder production, water utilization, palatability and digestibility.


Author(s):  
Hyun Choi ◽  
Wan-Chin Kim

Mechaless LiDAR technology, which does not have a mechanical drive part, has been actively studied in order to increase the reliability of the LiDAR device at low cost and drive environment in order to more actively apply LiDAR technology to autonomous driving. Mechaless LiDAR technology, which has been mainly studied recently, includes 3D Flash LiDAR technology, MEMS mirror utilization method, and OPA (Optical Phased Array). However, these methods have not been developed rapidly as a key technology for achieving autonomous driving due to low stability of driving environment or remarkably low measurable distance and FOV (field of view) compared with mechanical LiDAR. In this study, we investigated the improvement of FOV by using a flux-deflecting liquid lens and a fisheye lens that can achieve fine spatial resolution through continuous voltage regulation. Based on the initial design results, it was examined that the FOV can be secured to 80 ° or more by utilizing a relatively simple fisheye lens composed of only spherical lenses.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1452
Author(s):  
Taichi Murakami ◽  
Yu Kuwajima ◽  
Ardi Wiranata ◽  
Ayato Minaminosono ◽  
Hiroki Shigemune ◽  
...  

Demand for variable focus lens is increasing these days due to the rapid development of smart mobile devices and drones. However, conventional mechanical systems for lenses are generally complex, cumbersome, and rigid (e.g., for motors and gears). This research proposes a simple and compact liquid lens controlled by an electro hydro dynamics (EHD) pump. In our study, we propose a do-it-yourself (DIY) method to fabricate the low-cost EHD lens. The EHD lens consists of a polypropylene (PP) sheet for the exterior, a copper sheet for the electrodes, and an acrylic elastomer for the fluidic channel where dielectric fluid and pure water are filled. We controlled the lens magnification by changing the curvature of the liquid interface between the dielectric fluid and pure water. We evaluated the magnification performance of the lens. Moreover, we also established a numerical model to characterize the lens performance. We expect to contribute to the miniaturization of focus-tunable lenses.


2021 ◽  
pp. 1-27
Author(s):  
Marfran C. D. Santos ◽  
João V. M. Mariz ◽  
Raissa V. O. Silva ◽  
Camilo L. M. Morais ◽  
Kássio M. G. Lima

In view of the global pandemic that started in 2020, caused by COVID-19, the importance of the existence of fast, reliable, cheap diagnostic techniques capable of detecting the virus even in the first days of infection became evident. This review discusses studies involving the use of spectroscopic techniques in the detection of viruses in clinical samples. Techniques based on mid-infrared, near-infrared, Raman, and molecular fluorescence are explained and it was demonstrated how they can be used in conjunction with computational tools of multivariate analysis to build models capable of detecting viruses. Studies that used real clinical samples from 2011 to 2021 were analyzed. The results demonstrate the potential of the techniques in detecting viruses. Spectroscopic techniques, as well as chemometric techniques, were also explained. Viral diagnosis based on spectroscopy has interesting advantages compared to standard techniques such as: fast results, no need for reagents, non-destructiveness for the sample, no need for sample preparation, relatively low cost, among others. Several studies have corroborated the real possibility that, in the near future, we may have spectroscopic tools being successfully applied in viral diagnosis.


2021 ◽  
Vol 25 ◽  
Author(s):  
Rashid Ali ◽  
Ajay Kumar Chinnam ◽  
Vikas R. Aswar

: The deep eutectic mixtures (DESs), introduced as novel alternative to usual volatile organic solvents for organic transformations has attracted a tremendous attention of the research community because of their low cost, negligible vapour pressure, low toxicity, biodegradability, recyclability, insensitive towards moisture, and readily availability from bulk renewable resources. Although, the low melting mixture of dimethyl urea (DMU)/L-(+)-tartaric acid (TA) is still infancy yet much effective as it play double and triple roles such as solvent, catalyst and/or reagent in a same pot for many crucial organic transformations. These unique properties of DMU/TA mixture prompted us to provide a quick overview of where the field stands presently, and where it might be going in near future. To our best knowledge, no review dealing with the applications of a low melting mixture of DMU/TA appeared in the literature except the one published in 2017 describing only the chemistry of indole systems. Therefore, we intended to reveal the developments of this versatile low melting mixture in the modern organic synthesis since its first report in 2011 by Köenig’s team to till date. Hopefully, the present review article will be useful to the researcher working not only in the arena of synthetic organic chemistry but also to the scientists working in other branches of science and technology.


Author(s):  
R. Sakthivel ◽  
Mohanraj T. ◽  
Joseph John Marshal S. ◽  
Baranitharan P. ◽  
Tamilvanan A. ◽  
...  

Rapid industrialization and growth in population in urban regions augment the pollution levels from transportation sectors, especially from diesel fleets. A wide array of research activities were carried out to satisfy the energy needs as well as reduce the emission levels, which poses a big challenge to the research community. In this situation, biomass-derived fuels provide a ray of hope to the research community to address the emission problem by adapting closed carbon cycle at low cost. This chapter gives an overview to the readers about the present energy scenario, biomass-based fuel, upgradation techniques for biomass fuel, and engine adaptability of biomass-based fuels. This chapter provides a clear glimpse of biomass energy, one of the potential energy resources in the near future.


Author(s):  
Yangzhi Chen ◽  
Jiang Ding ◽  
Chuanghai Yao ◽  
Yueling Lv

In recent years, a gear named Space Curve Meshing Wheel (SCMW) has been invented based on the meshing theory of space curves instead of classic space surfaces. Well improved in many aspects after its invention, it has been applied within the Space Curve Meshing Reducer (SCMR). The design method of an invention named polyhedral SCMR is presented in this paper. With single input shaft and multiple output shafts, this SCMR has advantages like compact structure, flexible design and low cost. It is characterized by the application of the SCMW group containing one driving wheel and several driven wheels, whose rotation axes are concurrent at a point and radiate in polyhedral directions. A SCMW group can form a single-stage SCMR, while SCMW groups connected can form a multiple-stage SCMR. In this paper, geometric parameters of the polyhedral SCMR are defined, design formulas are derived, and an example is provided to illustrate the design process.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1625
Author(s):  
Tian Sang ◽  
Honglong Qi ◽  
Xun Wang ◽  
Xin Yin ◽  
Guoqing Li ◽  
...  

Broadband metamaterial absorbers (MAs) are critical for applications of photonic and optoelectronic devices. Despite long-standing efforts on broadband MAs, it has been challenging to achieve ultrabroadband absorption with high absorptivity and omnidirectional characteristics within a comparatively simple and low-cost architecture. Here we design, fabricate, and characterize a novel compact Cr-based MA to achieve ultrabroadband absorption in the visible to near-infrared wavelength region. The Cr-based MA consists of Cr nanorods and Cr substrate sandwiched by three pairs of SiO2/Cr stacks. Both simulated and experimental results show that an average absorption over 93.7% can be achieved in the range of 400–1000 nm. Specifically, the ultrabroadband features result from the co-excitations of localized surface plasmon (LSP) and propagating surface plasmon (PSP) and their synergistic absorption effects, where absorption in the shorter and longer wavelengths are mainly contributed bythe LSP and PSP modes, respectively. The Cr-based MA is very robust to variations of the geometrical parameters, and angle-and polarization-insensitive absorption can be operated well over a large range of anglesunder both transverse magnetic(TM)- and transverse electric (TE)-polarized light illumination.


Sign in / Sign up

Export Citation Format

Share Document