Torsional Vibrations in Rotor Shells

Author(s):  
R Whalley ◽  
M Ebrahimi

Rotors comprising a motor-driven thin cylindrical shell with rigidly attached ends and torsional dampers, all of which are supported on bearings, are investigated. Analysis procedures enabling the variations in the model singularities with parameter changes are outlined. General results are derived indicating that the system damping ratio is maximized under specific operating conditions. A typical high-speed rotor for a paper manufacturing process is considered and analytical and simulation results are presented, confirming the predicted optimum damper settings and thereby minimizing the transient oscillations.

Author(s):  
James M. Corliss ◽  
H. Sprysl

Abstract A new 100 MW (135,000 Hp) adjustable speed drive system has recently been installed in the NASA Langley National Transonic Facility. The 100 MW system is the largest of its kind in the world and consists of a salient pole synchronous motor powered by a 12-pulse Load Commutated Inverter variable frequency drive. During system commissioning the drive line torsional vibrations were measured with strain gages and a telemetry-based data acquisition system. The torque measurements included drive start-up and steady-state operation at speeds where the drive motor’s pulsating torques match the drive line’s torsional natural frequency. Rapid drive acceleration rates with short dwell times were effective in reducing torsional vibrations during drive starts. Measured peak torsional vibrations during steady-state operation were comparable to predicted values and large enough to produce noticeable lateral vibrations in the drive line shafting. Cyclic shaft stresses for all operating conditions were well within the fatigue limits of the drive line components. A comparison of the torque measurements to an analytical forced response model concluded that a 0.5% critical damping ratio was appropriately applied in the drive line’s torsional analysis.


1982 ◽  
Vol 104 (2) ◽  
pp. 158-165 ◽  
Author(s):  
R. E. Reid

The problem of definition of propulsion loss related to ship steering is addressed. Performance criteria representative of propulsion losses due to steering over a range of operating conditions including operation in calm water and a seaway are considered. Criteria are derived from strict analytical considerations and from empirical assumptions based on experimentally derived hydrodynamic data. The applicability of these various criteria and the implications for both assessment of relative performance of existing ship autopilots and for the design of new steering controllers is discussed in relation to simulation results for a high-speed containership.


2021 ◽  
Author(s):  
Yongqiang Liu ◽  
Baosen Wang ◽  
Bin Zhang ◽  
Shaopu Yang

Abstract This paper establishes a dynamic model of the bearing rotor system of a high-speed train under variable speed conditions. Different from previous works, the proposed model simplifies the contact stress and considers the compensation balance excitation caused by the rotor mass eccentricity. The angle iteration method is used to solve the challenging problem that the roller space position cannot be determined in bearing rotation. The simulation results show that the model accurately describes the dynamics of bearing under varying speed profiles that contain acceleration, deceleration and speed oscillation stages. The order ratio spectrum of the bearing vibration signal indicates that both single frequency and multiple frequency in simulation results are consistent with that in theoretical results. Experiments of bearing with outer ring fault and inner ring fault under various operating conditions are presented to verify the developed model.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


Author(s):  
Sampsa Vili Antero Laakso ◽  
Ugur Aydin ◽  
Peter Krajnik

AbstractOne of the most dominant manufacturing methods in the production of electromechanical devices from sheet metal is punching. In punching, the material undergoes plastic deformation and finally fracture. Punching of an electrical steel sheet causes plastic deformation on the edges of the part, which affects the magnetic properties of the material, i.e., increases iron losses in the material, which in turn has a negative effect on the performance of the electromagnetic devices in the final product. Therefore, punching-induced iron losses decrease the energy efficiency of the device. FEM simulations of punching have shown significantly increased plastic deformation on the workpiece edges with increasing tool wear. In order to identify the critical tool wear, after which the iron losses have increased beyond acceptable limits, the simulation results must be verified with experimental methods. The acceptable limits are pushed further in the standards by the International Electrotechnical Commission (IEC). The new standard (IEC TS 60034-30-2:2016) has much stricter limits regarding the energy efficiency of electromechanical machines, with an IE5 class efficiency that exceeds the previous IE4 class (IEC 60034-30-1:2014) requirements by 30%. The simulations are done using Scientific Forming Technologies Corporation Deform, a finite element software for material processing simulations. The electrical steel used is M400-50A, and the tool material is Vanadis 23, a powder-based high-speed steel. Vanadis 23 is a high alloyed powder metallurgical high-speed steel with a high abrasive wear resistance and a high compressive strength. It is suitable for cold work processing like punching. In the existing literature, FEM simulations and experimental methods have been incorporated for investigating the edge deformation properties of sheared surfaces, but there is a research gap in verifying the simulation results with the experimental methods. In this paper, FEM simulation of the punching process is verified using an electrical steel sheet from real production environment and measuring the deformation of the edges using microhardness measurements. The simulations show high plastic deformation 50 μm into the workpiece edge, a result that is shown to be in good agreement with the experimental results.


2011 ◽  
Vol 497 ◽  
pp. 296-305
Author(s):  
Yasushi Yuminaka ◽  
Kyohei Kawano

In this paper, we present a bandwidth-efficient partial-response signaling scheme for capacitivelycoupled chip-to-chip data transmission to increase data rate. Partial-response coding is knownas a technique that allows high-speed transmission while using a limited frequency bandwidth, by allowingcontrolled intersymbol interference (ISI). Analysis and circuit simulation results are presentedto show the impact of duobinary (1+D) and dicode (1-D) partial-response signaling for capacitivelycoupled interface.


2011 ◽  
Vol 422 ◽  
pp. 176-183
Author(s):  
Gang Wang ◽  
Yu Wan Cen

To improve the regulating characteristics of impact energy, simplify structure of hydraulic hammer, a new pulse modulation hydraulic hammer is presented in the paper which can help regulate its impact frequency easily. The motion equations of the hydraulic hammer are established, its simulation model is obtained and the dynamic simulation is carried out on AMESim. The dynamics of high-speed ON/OFF valve is taken into account in the simulation model. The tendency of simulation results conforms to experimental results; it shows that the pulse modulation hydraulic hammer is feasible, and the hydraulic hammer model is reasonable. The time delay in high working frequency is also analyzed.


Sign in / Sign up

Export Citation Format

Share Document