Investigations on machining characteristics and chip morphology in turning Al-Mn (AM) alloy using finite element simulation

Author(s):  
Sunil Dutta ◽  
Suresh Kumar Reddy Narala

Finite element analysis has become an indispensable tool, often used in research and development, to provide valuable insights into the process. The studies in the metal cutting area mostly employ the Finite element method (FEM) due to its ability to highlight the physics involved in chip formation and the range of force generated in the cutting zone. The study involves investigations by adopting the Johnson-Cook (JC) constitutive model with energy-based damage criteria to simulate the turning of a fabricated AM (Mg alloy: 7 wt%Al-0.9 wt%Mn) alloy. For the FEM, the JC and Damage model constants are calculated using inverse identification methodology. The results obtained on the cutting force (Fc), cutting temperature (Tc), and chip-thickness (tc) at different combinations of turning parameters were analyzed and compared with the experimental values. The Predicted data was in line with the experimental data, and a variation of mostly less than 12% was observed. Thus, establishing the efficacy of inverse identification method. Further, the obtained results exhibit the significant influence of turning parameters on Fc(N), Tc(°C), and tc(mm) and enunciates crucial facts related to the AM alloy's machinability.

2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


2010 ◽  
Vol 44-47 ◽  
pp. 425-429
Author(s):  
Sheng Yu Liu ◽  
Jian Ying Guo

The heat generation caused by tool-chip friction and chip deformation strongly influences the tool wear and tool life in metal cutting processes. The focus of this paper is on the effect of tool-chip on cutting temperature field. A series of ¬finite element simulations have been performed, in which a modifi¬ed Coulomb friction law is used to model the friction along tool–chip interface. A tool rake angle ranging from 10° to 45°, a inclination angle ranging from 0° to 20°, and a friction coefficient ranging from 0.1 to 0.6 have been considered in simulations. The results of these simulations show that the maximum cutting temperature increases with the increasing of tool-chip friction coefficient at different rake angle and inclination angle. The form of tool wear mainly appears as crater wear when the friction coefficient is less than 0.5, and the cutting edge tends to split when the friction coefficient is larger than 0.6.


2010 ◽  
Vol 443 ◽  
pp. 274-278 ◽  
Author(s):  
De Weng Tang ◽  
Cheng Yong Wang ◽  
Ying Ning Hu ◽  
Yue Xian Song

The modeling and simulation of chip formation during high speed milling of hardened mold steel are systematically studied by the Finite Element Analysis (FEA). The modified Johnson-Cook’s constitutive equation for hardened mold steel is introduced. Comparing to the experimental results, the simulated results of cutting force, chip morphology, effective stress and cutting temperature in deformation zones of high speed peripheral milling indicate good consistence and the models established can be used to accurately predict the behavior of hardened mold steel.


2010 ◽  
Vol 25 (11) ◽  
pp. 2224-2237 ◽  
Author(s):  
Haibo Wan ◽  
Yao Shen ◽  
Qiulong Chen ◽  
Youxing Chen

A modified plastic damage model that accounts for tensile damage and compressive plasticity as well as interactions among them is adopted to simulate the indentation-induced cracking of silicon under Berkovich, cube corner, and Vickers indenters. Simulations with this model capture not only the well-known cracking geometries in indented ceramics, such as radial, median, lateral, and half penny (Vickers indenter) cracks, but also the recent experimentally discovered quarter penny cracks under Berkovich and cube corner pyramidal indenters. The quarter penny cracks are found to be formed by the coalescence of radial and median cracks for the first time in the simulation. Loads at which radial and half penny cracks are initiated in silicon are generally close to the experimental values reported in the literature, and the crack lengths on the sample surface agree well with both the current experimental measurements and analytical results by fracture mechanics.


2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


2005 ◽  
Vol 297-300 ◽  
pp. 1019-1024
Author(s):  
Mitsugu Todo ◽  
Yoshihiro Fukuya ◽  
Seiya Hagihara ◽  
Kazuo Arakawa

Microscopic studies on the toughening mechanism of rubber-toughened PMMA (RTPMMA) were carried out using a polarizing optical microscope (POM) and a transmission electron microscope (TEM). POM result showed that in a typical RT-PMMA, a damage zone was developed in the vicinity of crack-tip, and therefore, it was considered that energy dissipation due to the damage zone development was the primary toughening mechanism. TEM result exhibited that the damage zone was a crowd of micro-crazes generated around rubber particles in the vicinity of notch-tip. Finite element analysis was then performed to simulate such damage formations in crack-tip region. Macro-scale and micro-scale models were developed to simulate damage zone formation and micro-crazing, respectively, with use of a damage model. It was shown that the damage model introduced was successfully applied to predict such kind of macro-damage and micro-craze formations.


Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


2018 ◽  
Vol 30 ◽  
pp. 1-7 ◽  
Author(s):  
Fatih Hayati Çakır ◽  
Mehmet Alper Sofuoğlu ◽  
Selim Gürgen

Nickel-based alloys provide high corrosion resistance and high-temperature strength but these alloys possess poor machinability. Hastelloy-X is a nickel based alloy that has been used for high temperature use. There are many studies about finite element modeling of aerospace alloys but studies in literature with Hastelloy-X are limited. In the present work, machining characteristics of Hastelloy-X were investigated and a numerical model was developed for the turning operation of Hastelloy-X. Two input parameters (cutting speed and feed rate) were variated in the operations and the results were evaluated considering process outputs such as cutting forces, cutting temperature, effective stresses and chip morphology. Based on the verification of the numerical model using experimental results, presented material model is appropriate for the turning operation of Hastelloy-X at low and medium cutting speed machining conditions.


2015 ◽  
Vol 809-810 ◽  
pp. 235-240
Author(s):  
Catalina Maier ◽  
Robin Gauthier

Roller leveling is a forming process which used to minimize flatness imperfection and residual stresses by repeated forming process of a sheet metal. The determination of the machine settings must be very accurate and ask a precise mechanical study. In order to determine an algorithm which can predict the leveling quality according to the machine settings we start by a theoretical model of stress evolution during the process. The plastification ratio is deducted from this one and the values obtained by this approach are compared whit experimental values. The finite element analysis is performed, in second step in order to assure a good accuracy of the prediction algorithm. Theoretical study determines a minimum of the plastification ratio according to the machine settings. The finite element analysis gives more accurate results due to the consideration of different characteristics of the process, neglected by the theoretical model: cumulative effect of bending/unbending with stretching of the sheet during the passing between each couple of rolls, boundary conditions at the limit of the material deformed by two adjoining couples of rolls, friction force.


Sign in / Sign up

Export Citation Format

Share Document