On the design strategies for SMA-based morphing actuators: state of the art and common practices applied to a fascinating case study

Author(s):  
Alessio Suman ◽  
Elettra Fabbri ◽  
Annalisa Fortini ◽  
Mattia Merlin ◽  
Michele Pinelli

The request of even more stringent restrictions, regarding efficiency and environmental impact of industrial components, determines an optimized use of primary energy but also entails the design of more lightweight, smart and flexible devices, able to adapt their operation as a function of several different inputs. In this framework, the use of a fascinating class of metallic materials, called Shape Memory Alloys (SMAs), could represent a valid support for the designers. The capability of these materials to react to an external stimulus, without continuing to supply energy to external actuators, represents, especially in the aerospace engineering field, a technological breakthrough. The present paper reports the basic ideas and summarizes the important aspects related to the development of SMA-based actuators in relation to the present state of the art. A case study of morphing blades, equipped with embedded SMA strips, for an automotive cooling fan is reported. Finally, some hints, regarding the design process of SMA-based actuators, are proposed.

2011 ◽  
Vol 21 (02) ◽  
pp. 245-272 ◽  
Author(s):  
DUANE MERRILL ◽  
ANDREW GRIMSHAW

The need to rank and order data is pervasive, and many algorithms are fundamentally dependent upon sorting and partitioning operations. Prior to this work, GPU stream processors have been perceived as challenging targets for problems with dynamic and global data-dependences such as sorting. This paper presents: (1) a family of very efficient parallel algorithms for radix sorting; and (2) our allocation-oriented algorithmic design strategies that match the strengths of GPU processor architecture to this genre of dynamic parallelism. We demonstrate multiple factors of speedup (up to 3.8x) compared to state-of-the-art GPU sorting. We also reverse the performance differentials observed between GPU and multi/many-core CPU architectures by recent comparisons in the literature, including those with 32-core CPU-based accelerators. Our average sorting rates exceed 1B 32-bit keys/sec on a single GPU microprocessor. Our sorting passes are constructed from a very efficient parallel prefix scan "runtime" that incorporates three design features: (1) kernel fusion for locally generating and consuming prefix scan data; (2) multi-scan for performing multiple related, concurrent prefix scans (one for each partitioning bin); and (3) flexible algorithm serialization for avoiding unnecessary synchronization and communication within algorithmic phases, allowing us to construct a single implementation that scales well across all generations and configurations of programmable NVIDIA GPUs.


2019 ◽  
Vol 15 (3) ◽  
pp. 216-230 ◽  
Author(s):  
Abbasali Emamjomeh ◽  
Javad Zahiri ◽  
Mehrdad Asadian ◽  
Mehrdad Behmanesh ◽  
Barat A. Fakheri ◽  
...  

Background:Noncoding RNAs (ncRNAs) which play an important role in various cellular processes are important in medicine as well as in drug design strategies. Different studies have shown that ncRNAs are dis-regulated in cancer cells and play an important role in human tumorigenesis. Therefore, it is important to identify and predict such molecules by experimental and computational methods, respectively. However, to avoid expensive experimental methods, computational algorithms have been developed for accurately and fast prediction of ncRNAs.Objective:The aim of this review was to introduce the experimental and computational methods to identify and predict ncRNAs structure. Also, we explained the ncRNA’s roles in cellular processes and drugs design, briefly.Method:In this survey, we will introduce ncRNAs and their roles in biological and medicinal processes. Then, some important laboratory techniques will be studied to identify ncRNAs. Finally, the state-of-the-art models and algorithms will be introduced along with important tools and databases.Results:The results showed that the integration of experimental and computational approaches improves to identify ncRNAs. Moreover, the high accurate databases, algorithms and tools were compared to predict the ncRNAs.Conclusion:ncRNAs prediction is an exciting research field, but there are different difficulties. It requires accurate and reliable algorithms and tools. Also, it should be mentioned that computational costs of such algorithm including running time and usage memory are very important. Finally, some suggestions were presented to improve computational methods of ncRNAs gene and structural prediction.


Author(s):  
Ginestra Bianconi

Defining the centrality of nodes and layers in multilayer networks is of fundamental importance for a variety of applications from sociology to biology and finance. This chapter presents the state-of-the-art centrality measures able to characterize the centrality of nodes, the influences of layers or the centrality of replica nodes in multilayer and multiplex networks. These centrality measures include modifications of the eigenvector centrality, Katz centrality, PageRank centrality and Communicability to the multilayer network scenario. The chapter provides a comprehensive description of the research of the field and discusses the main advantages and limitations of the different definitions, allowing the readers that wish to apply these techniques to choose the most suitable definition for his or her case study.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1862
Author(s):  
Alexandros-Georgios Chronis ◽  
Foivos Palaiogiannis ◽  
Iasonas Kouveliotis-Lysikatos ◽  
Panos Kotsampopoulos ◽  
Nikos Hatziargyriou

In this paper, we investigate the economic benefits of an energy community investing in small-scale photovoltaics (PVs) when local energy trading is operated amongst the community members. The motivation stems from the open research question on whether a community-operated local energy market can enhance the investment feasibility of behind-the-meter small-scale PVs installed by energy community members. Firstly, a review of the models, mechanisms and concepts required for framing the relevant concepts is conducted, while a clarification of nuances at important terms is attempted. Next, a tool for the investigation of the economic benefits of operating a local energy market in the context of an energy community is developed. We design the local energy market using state-of-the-art formulations, modified according to the requirements of the case study. The model is applied to an energy community that is currently under formation in a Greek municipality. From the various simulations that were conducted, a series of generalizable conclusions are extracted.


2021 ◽  
Vol 13 (4) ◽  
pp. 2373
Author(s):  
Ali Cheshmehzangi ◽  
Andrew Flynn ◽  
May Tan-Mullins ◽  
Linjun Xie ◽  
Wu Deng ◽  
...  

This paper introduces the new concept of “eco-fusion” through an exploratory case study project. It suggests the importance of multi-scalar practice in the broader field of eco-urbanism. This study introduces eco-fusion as a multiplexed paradigm, which is then discussed in two different development models. This paper first highlights the position of “eco” in urbanism by providing a brief account of key terms and how they relate to one another. It then points out the associations between eco-fusion and sustainable urban development. Through an exploratory case study example in China, the practical factors of eco-development are assessed. The study aims to provide a set of intermediate development stages while maintaining each spatial level’s interface in their own defined and distinguished contexts. The key objective is to consider integrating the natural and built environments, which is considered the best practice of eco-development in urbanism. This study’s findings highlight integrated methods in eco-urbanism and suggest new directions for eco-planning/eco-design strategies.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yun Hye Hwang ◽  
Anuj Jain

Abstract Urban landscapes have the potential to conserve wildlife. Despite increasing recognition of this potential, there are few collaborative efforts to integrate ecology and conservation principles into context-dependent, spatial and actionable design strategies. To address this issue and to encourage multi-disciplinary research on urban human–wildlife interactions, we ask the following questions. To what extent should design and planning actions be aligned with urban ecology in the context of a compact city? How can wildlife conservation meet the seemingly conflictual demands of urban development and public preference? To answer these questions, we refer to the relevant literature and a number of design projects. Using the compact tropical city of Singapore as a case study, we propose 12 design strategies. We encourage designers and planners to strengthen the links between wildlife and urban dwellers and promote wildlife conservation within cities.


2021 ◽  
Vol 13 (15) ◽  
pp. 8238
Author(s):  
Noemi Bakos ◽  
Rosa Schiano-Phan

To transform the negative impacts of buildings on the environment into a positive footprint, a radical shift from the current, linear ‘make-use-dispose’ practice to a closed-loop ‘make-use-return’ system, associated with a circular economy, is necessary. This research aims to demonstrate the possible shift to a circular construction industry by developing the first practical framework with tangible benchmarks for a ‘Circular University Campus’ based on an exemplary case study project, which is a real project development in India. As a first step, a thorough literature review was undertaken to demonstrate the social, environmental and economic benefits of a circular construction industry. As next step, the guideline for a ‘Circular University Campus’ was developed, and its applicability tested on the case study. As final step, the evolved principles were used to establish ‘Project Specific Circular Building Indicators’ for a student residential block and enhance the proposed design through bioclimatic and regenerative design strategies. The building’s performance was evaluated through computational simulations, whole-life carbon analysis and a circular building assessment tool. The results demonstrated the benefits and feasibility of bioclimatic, regenerative building and neighbourhood design and provided practical prototypical case study and guidelines which can be adapted by architects, planners and governmental institutions to other projects, thereby enabling the shift to a restorative, circular construction industry.


Sign in / Sign up

Export Citation Format

Share Document