Determination of the flight trajectory in terms of emission and fuel consumption minimization

Author(s):  
Małgorzata Pawlak ◽  
Michał Kuźniar ◽  
Andrzej R. Majka

The present-day world is characterized by the intense development of air transport. However, along with it, significant problems appear. Among these problems, the most important are those relating to safety and negative impact of air transport on the environment. Air transport efficiency and profitability issues, although not critical, must also be taken into account because they decide about the intensity of development of this branch of transport. There are currently two large programs in Europe oriented at improving safety, environmental, and efficiency indicators. These are SESAR 2020 and Clean Sky 2, being a continuation of previous ones. One of the ways to reduce negative impact of air transport on the environment and improve its efficiency is to reduce fuel consumption and pollutants emissions resulting from fuel combustion. To find solutions with the abovementioned features, it is necessary to have sufficiently accurate models to estimate the amount of fuel consumed and the amount of pollutants emitted. Developing a sufficiently accurate model to determine fuel consumption and pollutants emission was performed. Due to the specificity of the missions carried out by passenger aircraft, the focus was on the cruise stage when aircraft flies at a constant altitude with a constant air speed. The result of the analysis was the development of methodology for fuel consumption and emission of main pollutants in cruise conditions. Specific fuel consumption is calculated for the thrust required for horizontal flight at cruising altitude. Emission indexes for CO, NOx, HC, and CO2 for the cruise have been determined based on known indexes for the landing and take-off cycle phase, after applying appropriate corrections. An illustration of the application of the developed methodology was the optimization of a medium-sized transport aircraft trajectory on a selected connection to determine a trajectory characterized by a minimum emission value taking into account weather conditions.

2019 ◽  
Vol 26 (3) ◽  
pp. 145-153
Author(s):  
Małgorzata Pawlak

Abstract One of the ways to reduce the adverse impact of aircraft on the environment is through the determination of the trajectory of the flight on a given route that leads to reducing fuel consumption and, consequently, emission of pollutants in jet engines exhausts. Planning a flight in terms of minimizing emissions or fuel consumption is a complex task and difficult to implement due to the conditions in which the aircraft travels, but it is possible though. It is necessary to take into account the limitations resulting from the organization of the airspace and the rules therein, as well as the current weather conditions. The weather is one of the main factors determining the amount of fuel consumed, the time and cost of a particular flight on a given route. In addition to the main parameters, such as pressure and air density, it is extremely important to determine the air temperature, as well as the wind speed and direction. The temperature affects the speed of sound, based on which it is possible to determine the Mach number for a plane flying with a given true air speed (TAS). The speed and direction of wind, on the other hand, affect the speed of the aircraft relative to the ground (velocity over ground, VOG), and thus the duration of its flight. The article describes how the developed model of emission of pollutants in the exhausts of jet bypass engines can be useful for determining the trajectory of an aircraft in its cruise phase due to the criterion of pollutants emissions minimization. An exemplary analysis was carried out for selected aircraft moving along the route adopted for the research. The analysis covered various cruising altitudes and various meteorological conditions (wind speed and direction). The obtained results are illustrated graphically and discussed.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-11
Author(s):  
Marina Efthymiou ◽  
Frank Fichert ◽  
Olaf Lantzsch

Abstract. The paper examines the workload perceived by air traffic control officers (ATCOs) and pilots during continuous descent operations (CDOs), applying closed- and open-path procedures. CDOs reduce fuel consumption and noise emissions. Therefore, they are supported by airports as well as airlines. However, their use often depends on pilots asking for CDOs and controllers giving approval and directions. An adapted NASA Total Load Index (TLX) was used to measure the workload perception of ATCOs and pilots when applying CDOs at selected European airports. The main finding is that ATCOs’ workload increased when giving both closed- and open-path CDOs, which may have a negative impact on their willingness to apply CDOs. The main problem reported by pilots was insufficient distance-to-go information provided by ATCOs. The workload change is important when considering the use of CDOs.


2021 ◽  
Vol 13 (3) ◽  
pp. 1383
Author(s):  
Judith Rosenow ◽  
Martin Lindner ◽  
Joachim Scheiderer

The implementation of Trajectory-Based Operations, invented by the Single European Sky Air Traffic Management Research program SESAR, enables airlines to fly along optimized waypoint-less trajectories and accordingly to significantly increase the sustainability of the air transport system in a business with increasing environmental awareness. However, unsteady weather conditions and uncertain weather forecasts might induce the necessity to re-optimize the trajectory during the flight. By considering a re-optimization of the trajectory during the flight they further support air traffic control towards achieving precise air traffic flow management and, in consequence, an increase in airspace and airport capacity. However, the re-optimization leads to an increase in the operator and controller’s task loads which must be balanced with the benefit of the re-optimization. From this follows that operators need a decision support under which circumstances and how often a trajectory re-optimization should be carried out. Local numerical weather service providers issue hourly weather forecasts for the coming hour. Such weather data sets covering three months were used to re-optimize a daily A320 flight from Seattle to New York every hour and to calculate the effects of this re-optimization on fuel consumption and deviation from the filed path. Therefore, a simulation-based trajectory optimization tool was used. Fuel savings between 0.5% and 7% per flight were achieved despite minor differences in wind speed between two consecutive weather forecasts in the order of 0.5 m s−1. The calculated lateral deviations from the filed path within 1 nautical mile were always very small. Thus, the method could be easily implemented in current flight operations. The developed performance indicators could help operators to evaluate the re-optimization and to initiate its activation as a new flight plan accordingly.


2004 ◽  
Vol 31 (2) ◽  
pp. 369-378 ◽  
Author(s):  
Aly Sherif ◽  
Yasser Hassan

Road and highway maintenance is vital for the safety of citizens and for enabling emergency and security services to perform their essential functions. Accumulation of snow and (or) ice on the pavement surface during the wintertime substantially increases the risk of road crashes and can have negative impact on the economy of the region. Recently, road maintenance engineers have used pavement surface temperature as a guide to the application of deicers. Stations for road weather information systems (RWIS) have been installed across Europe and North America to collect data that can be used to predict weather conditions such as air temperature. Modelling pavement surface temperature as a function of such weather conditions (air temperature, dew point, relative humidity, and wind speed) can provide an additional component that is essential for winter maintenance operations. This paper uses data collected by RWIS stations at the City of Ottawa to device a procedure that maximizes the use of a data batch containing complete, partially complete, and unusable data and to study the relationship between the pavement surface temperature and weather variables. Statistical models were developed, where stepwise regression was first applied to eliminate those variables whose estimated coefficients are not statistically significant. The remaining variables were further examined according to their contribution to the criterion of best fit and their physical relationships to each other to eliminate multicollinearities. The models were further corrected for the autocorrelation in their error structures. The final version of the developed models may then be used as a part of the decision-making process for winter maintenance operations.Key words: winter maintenance, pavement temperature, statistical modelling, RWIS.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 580
Author(s):  
Michał Gołębiewski ◽  
Marta Galant-Gołębiewska ◽  
Remigiusz Jasiński

Protection of the natural environment is a key activity driving development in the transport discipline today. The use of simulators to train civil aviation pilots provides an excellent opportunity to maintain the balance between efficiency and limit the negative impact of transport on the environment. Therefore, we decided to determine the impact of selected simulations of air operations on energy consumption. The aim of the research was to determine the energy consumption of the flight simulator depending on the type of flight operation and configuration used. We also decided to compare the obtained result with the energy consumption of an aircraft of a similar class, performing a similar aviation operation and other means of transport. In order to obtain the results, a research plan was proposed consisting of 12 scenarios differing in the simulated aircraft model, weather conditions and the use of the simulator motion platform. In each of the scenarios, energy consumption was measured, taking into account the individual components of the simulator. The research showed that the use of a flight simulator has a much smaller negative impact on the natural environment than flying in a traditional plane. Use of a motion platform indicated a change in energy consumption of approximately 40% (in general, flight simulator configuration can change energy consumption by up to 50%). The deterioration of weather conditions during the simulation caused an increase in energy consumption of 14% when motion was disabled and 18% when motion was enabled. Energy consumption in the initial stages of pilot training can be reduced by 97% by using flight simulators compared to aircraft training.


2019 ◽  
Vol 26 (3) ◽  
pp. 31-38
Author(s):  
Wojciech Gis ◽  
Maciej Gis ◽  
Piotr Wiśniowski ◽  
Mateusz Bednarski

Abstract Limiting emissions of harmful substances is a key task for vehicle manufacturers. Excessive emissions have a negative impact not only on the environment, but also on human life. A significant problem is the emission of nitrogen oxides as well as solid particles, in particular those up to a diameter of 2.5 microns. Carbon dioxide emissions are also a problem. Therefore, work is underway on the use of alternative fuels to power the vehicle engines. The importance of alternative fuels applies to spark ignition engines. The authors of the article have done simulation tests of the Renault K4M 1.6 16v traction engine for emissions for fuels with a volumetric concentration of bioethanol from 10 to 85 percent. The analysis was carried out for mixtures as substitute fuels – without doing any structural changes in the engine's crankshafts. Emission of carbon monoxide, carbon dioxide, hydrocarbons, oxygen at full throttle for selected rotational speeds as well as selected engine performance parameters such as maximum power, torque, hourly and unit fuel consumption were determined. On the basis of the simulation tests performed, the reasonableness of using the tested alternative fuels was determined on the example of the drive unit without affecting its constructions, in terms of e.g. issue. Maximum power, torque, and fuel consumption have also been examined and compared. Thus, the impact of alternative fuels will be determined not only in terms of emissions, but also in terms of impact on the parameters of the power unit.


2018 ◽  
Vol 173 (2) ◽  
pp. 55-60
Author(s):  
Małgorzata PAWLAK ◽  
Andrzej MAJKA ◽  
Michał KUŹNIAR ◽  
Jowita PAWLUCZY

Among the most important problems currently faced by air transport, we can distinguish the adverse impact of aircrafts on the natu-ral environment, as well as the rising costs of transport. One of the possibilities to improve this situation is better adjustment of aircraft characteristics to the performed transport tasks, taking into account all the requirements and limitations that exist in air traffic and the adverse impact of air transport on the natural environment. It is reflected in the research tasks conducted under the SESAR program. The aspiration to minimize the adverse impact of aircrafts on the environment is executed, among others, through determining such trajectories that are characterized by minimal fuel consumption or minimal emission of harmful substances in the engines exhausts. These goals are corresponding with the research conducted and described in the paper. The main aim of the work was to analyse the impact of wind speed and direction on the emission of harmful substances of a jet aircraft performing a flight on a given route. For research purposes, the route between two Polish cities Gdansk and Rzeszow was considered. The distance between the two airports was divided into sections for which wind direction and strength were determined (read from the windy.com website). Next, the aircraft per-formance was determined and the fuel consumption and the amount of harmful compounds (CO2, NOx, CO and HC), emitted in the en-gines exhausts were determined for the route from Gdansk to Rzeszow (under favourable wind conditions) and on the return route – from Rzeszow to Gdansk (under unfavourable wind conditions). For comparative purposes, emission of these substances for windless condi-tions was also determined. The results are presented in tables and depicted in the graph, as well as discussed in the conclusions of the paper.


2021 ◽  
Vol 268 ◽  
pp. 01055
Author(s):  
Dandan Xu ◽  
Zhongming Gao ◽  
Yong Guo ◽  
Yan Yan ◽  
Fengbin Wang ◽  
...  

This study selects a China VI heavy duty vehicle for PEMS test, and Based on the measurement results of vehicle specific power (VSP) parameters, the VSP calculation formula applicable to this study is proposed , And analyzes the distribution characteristics of VSP, and at the same time according to the fuel consumption and emission data of the actual road driving process collected by the vehicle, The effect of VSP on vehicle fuel consumption and emission characteristics and the correlation between the two are studied. Results show that VSP of the vehicle are mainly concentrated in the interval -10 ≤ VSP ≤ 10kw / t, in which the vehicle driving time accounts for about 99.3% of the total time; the correlation coefficient between VSP and average fuel consumption is about 0.93, there is a strong correlation; The changes of CO, CO2, NOX and PN with VSP all show as that under the same absolute value of VSP, the pollutants emission rate in the VSP> 0 interval is higher than the VSP <0 interval, in which the correlation between VSP and CO, CO2, PN emissions is more strong, but poorly correlated with NOX emissions.


Author(s):  
Kateryna Dodukh ◽  
◽  
Anton Palchyk ◽  

The work is devoted to the solution of the issue of economic and safe transportation of goods and passengers by road. This transportation depends on the condition of roads, road surface, vehicle type and weather conditions. Weather conditions are taken into account both in terms of visibility (meteorological) and in terms of the coefficient of adhesion. The general criterion for assessing all conditions is the average speed of the vehicle, taking into account weather and road conditions. Weather conditions are determined by the type of visibillity: clear weather, rain, snowfall, blizzards, rain. By the coefficient of adhesion: dry surface, normal, wet, snow, ice. By road conditions: category of road, width of the travel section, radii of horizontal curves, longitudinal slopes, width of the road, the state of surface (coefficient of solidity). According to weather conditions, the calendar year is divided into three periods according to the conditions of cars’ movement. The first (winter) - December, January, February, March; second (spring-summer) - April, May, July, June, August; third (autumn) - September, October, November. The use of weather conditions in the Northern regions of Ukraine is presented in this work.


2020 ◽  
Vol 9 (3) ◽  
pp. 27-43
Author(s):  
Nikola Fabris

AbstractFighting climate change is one of the biggest challenges in the 21st century. Climate change that leads to global warming has been increasingly visible in our environment. Extreme weather conditions such as hurricanes, floods, and droughts have been escalating and their acceleration can be expected in the future. They cause changes in sea levels, epidemics, large fires, etc. Increasingly, we are witnessing minor or major damage caused by these extreme weather conditions. Numerous studies have proven that climate change has negative impact on economic growth and prosperity. However, this paper starts from the premise that in addition to unequivocally identified threats, climate change also creates opportunities.The paper reaches a conclusion that climate change can adversely affect balance sheets of financial institutions. Therefore, climate change is a source of financial risk and thus a part of the mandate of central banks and supervisors in preserving financial stability. This type of risk has not been given enough attention by either supervisors or financial institutions over the past period. This paper develops a model for managing financial risks as a result of climate change.


Sign in / Sign up

Export Citation Format

Share Document