Optimal energy mix for greenhouse gas reduction with renewable energy – The case of the South Korean electricity sector

2019 ◽  
Vol 31 (6) ◽  
pp. 1055-1076
Author(s):  
Sungheum Cho ◽  
Hana Kim ◽  
Sanghoon Lee ◽  
Sangil Kim ◽  
Eui-Chan Jeon

The power generation sector is one of the largest sources of greenhouse gas emissions in South Korea. Reducing greenhouse gas emissions in this sector is therefore of crucial importance. The government has recently released its core energy policy objectives: elimination of coal-fired power generation, phase-out of nuclear plants, and promotion of renewable energy sources. This energy policy should be consistent with the national climate change response policy. This paper analyzed the optimum power generation structure based on the South Korean government’s energy policy and climate change policy and then analyzed the optimum power generation structure if the greenhouse gas reduction and renewable energy targets were different. Seven scenarios with different 2030 greenhouse gas reduction and renewable energy generation targets were investigated. The scenario analysis shows that it is difficult to reduce dependence on coal power generation if the South Korean government’s current energy and climate change policies are maintained. The current greenhouse gas reduction target level is insufficient to be a driving force for energy transition, but dependence on coal power generation can be reduced by applying a deeper level of greenhouse gas reduction (e.g. 50% reduction compared to BAU). To achieve the energy transition planned by the South Korean government, it would be necessary to set a target for greenhouse gas reduction that is deeper than the current plan. The results of this study analyzing the optimal power configuration for 2030 in light of South Korea’s energy and climate change policies are expected to contribute to the South Korean government’s establishment of policies in the future.

2019 ◽  
Vol 31 (7) ◽  
pp. 1181-1190 ◽  
Author(s):  
Hyo-Jin Kim ◽  
Seul-Ye Lim ◽  
Seung-Hoon Yoo

The South Korean government is pursuing an energy transition, which means a reduction in nuclear power and coal-fired power generation, and an expansion into renewable energy. This study seeks to evaluate the South Korean public’s preference for a mix of power generation sources. For this purpose, 1000 households throughout the country were randomly selected and a choice experiment survey of them was undertaken in March 2018. We considered four attributes: the ratio of nuclear power, the ratio of coal-fired generation, the ratio of natural gas-fired generation, and the ratio of renewable energy. An increase in the monthly electric bill was also considered as an attribute. The results of applying the choice experiment approach show that households were willing to accept an increase in their monthly electric bill by KRW 192 (USD 0.17) and KRW 165 (USD 0.15) for reducing the proportion of nuclear power and coal, respectively, by 1%p. They were willing to pay KRW 159 (USD 0.14) and KRW 409 (USD 0.38) for raising the ratio of natural gas and renewable energy, respectively, through an increase in the monthly electricity bill. The findings reveal that the government’s energy transition has overall support from the public.


2021 ◽  
Vol 13 (6) ◽  
pp. 3170
Author(s):  
Avri Eitan

Evidence shows that global climate change is increasing over time, and requires the adoption of a variety of coping methods. As an alternative for conventional electricity systems, renewable energies are considered to be an important policy tool for reducing greenhouse gas emissions, and therefore, they play an important role in climate change mitigation strategies. Renewable energies, however, may also play a crucial role in climate change adaptation strategies because they can reduce the vulnerability of energy systems to extreme events. The paper examines whether policy-makers in Israel tend to focus on mitigation strategies or on adaptation strategies in renewable energy policy discourse. The results indicate that despite Israel’s minor impact on global greenhouse gas emissions, policy-makers focus more on promoting renewable energies as a climate change mitigation strategy rather than an adaptation strategy. These findings shed light on the important role of international influence—which tends to emphasize mitigation over adaptation—in motivating the domestic policy discourse on renewable energy as a coping method with climate change.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4402
Author(s):  
Chun-Kai Wang ◽  
Chien-Ming Lee ◽  
Yue-Rong Hong ◽  
Kan Cheng

Energy transition has become a priority for adaptive policy and measures taken in response to climate change around the world. This is an opportunity and a challenge for the Taiwan government to establish a climate-resilient power generation mixed to ensure electricity security as well as climate change mitigation. This study adopted a sustainable development perspective and applied optimal control theory to establish a cost-effective model to evaluate a long-term (2050), climate-resilient power generation mix for Taiwan. Furthermore, this study applies the STIRPAT approach to predict the demand of electricity by 2050 for the demand side management. The results not only showed the share of various power generation mixed, but also recommended the trajectory of electricity saving by 2050.


Author(s):  
Jaewon Jung ◽  
Sungeun Jung ◽  
Junhyeong Lee ◽  
Myungjin Lee ◽  
Hung Soo Kim

The interest in renewable energy to replace fossil fuel is increasing as the problem caused by climate change become more severe. Small hydropower (SHP) is evaluated as a resource with high development value because of its high energy density compared to other renewable energy sources. SHP may be an attractive and sustainable power generation environmental perspective because of its potential to be found in small rivers and streams. The power generation potential could be estimated based on the discharge in the river basin. Since the river discharge depends on the climate conditions, the hydropower generation potential changes sensitively according to climate variability. Therefore, it is necessary to analyze the SHP potential in consideration of future climate change. In this study, the future prospect of SHP potential is simulated for the period of 2021 to 2100 considering the climate change in three hydropower plants of Deoksong, Hanseok, and Socheon stations, Korea. As the results, SHP potential for the near future (2021 to 2040) shows a tendency to be increased and the highest increase is 23.4% at the Deoksong SPH plant. Through the result of future prospect, we have shown that hydroelectric power generation capacity or SHP potential will be increased in the future. Therefore, we believe that it is necessary to revitalize the development of SHP in order to expand the use of renewable energy. Also, a methodology presented in this study could be used for the future prospect of the small hydropower potential.


2021 ◽  
Vol 09 (12) ◽  
pp. 151-167
Author(s):  
Usman Bello ◽  
Livingstone Udofia ◽  
Olayinka A. Ibitowa ◽  
Auwal M. Abdullahi ◽  
Ibrahim Sulaiman ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 1035 ◽  
Author(s):  
Hyo-Jin Kim ◽  
Jeong-Joon Yu ◽  
Seung-Hoon Yoo

In an era of energy transition involving an increase in renewable energy and a reduction in coal-fired power generation and nuclear power generation, the role of combined heat and power (CHP) as a bridging energy is highly emphasized. This article attempts to look empirically into the impact of increasing the share of renewable energy in total electricity generation on CHP share in total electricity generation in a cross-country context. Data from 35 countries during the period 2009–2015 were used, and the least absolute deviations estimator was applied to obtain a more robust parameter estimate. The results showed that a 1%p increase in the share of renewable energy significantly increased the CHP share by 0.87%p. Therefore, the hypothesis that CHP serves as bridge energy in the process of energy transition was established.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 965 ◽  
Author(s):  
Jacek Brożyna ◽  
Wadim Strielkowski ◽  
Alena Fomina ◽  
Natalya Nikitina

Our paper focuses on the renewable energy and EU 2020 target for energy efficiency in the Czech Republic and Slovakia. We study the reduction of greenhouse gas (GHG) emissions in these two EU Member States through the prism of the Europe 2020 strategy and the 3 × 20 climate and energy package and economic growth (represented by the Gross Domestic Product (GDP) that allows to measure the national dynamics and provide cross-country comparisons) without attributing specific attention to issues such as the electrification of transport or heating, and thence leaving them outside the scope of this paper. Both Czech Republic and Slovakia are two post-Communist countries that still face the consequences of economic transformation and struggle with the optimal management of natural resources. Both countries encountered profound system transformation after 1989 that are apparent in all three measures of sustainable development used in our study. We show that it is unlikely that the planned increase in renewable energy in the Czech Republic and Slovakia will reach its targets, but they might succeed in reducing their energy consumption and greenhouse gas emissions. Our findings show that the energy intensity of Czech and Slovak economies increased in the early 2000s and then stabilized at a level about twice of the EU average. It appears that this value is likely to remain the same in the forthcoming years. However, implementation of GHG emissions in the Czech Republic and Slovakia may be at risk in case the proper energy policy is not maintained. Moreover, our results show how the increase in the share of renewable energy and improvement in energy efficiency go hand-in-hand with mining and exploiting the energy sources that is notorious for the transition economies. We also demonstrate that a proper energy policy is required for effectively reducing energy consumption and greenhouse gas emissions. There is a need for commitments made by relevant stakeholders and policymakers targeted at achieving sustainable economic growth and energy efficiency. In addition, we demonstrate that there is a need for maintaining a proper balance between economic development and environmental protection, which is a must for the EU sustainable energy development agenda and all its accompanying targets for all its Member States.


2009 ◽  
Vol 49 (2) ◽  
pp. 576
Author(s):  
Jon Stanford

In March 2009, the Australian government published draft legislation for its proposed emissions trading scheme—the Carbon Pollution Reduction Scheme (CPRS). The CPRS is the main instrument that will be employed to achieve Australia’s stated objective of greenhouse gas mitigation, together with the new renewable energy target (RET) mandating that 20% of Australia’s electricity will be provided by renewable energy by 2020. The stated objective is to achieve a 5% reduction in emissions from the year 2000–2020. The objective of a 5% reduction in emissions (identified as CPRS-5 in the Treasury modelling undertaken for Garnaut and the Australian Government) is a more modest target than scientific opinion tells us is required to achieve temperature stabilisation at a level around two degrees higher than the average level now. Yet this target has been selected on the assumption that the rest of the world does not take more substantial action. If Australia seeks to achieve more than the rest of the world there will be a negligible impact on global emissions while we will export investments and jobs to less ambitious countries. In any case, a 5% reduction in emissions from 2000 levels will be difficult to achieve in the absence of major technological change being realised before 2020. It represents a reduction from the year 2000’s levels of 25% in per capita terms, and around 25% from projections of emissions under business-as-usual assumptions. Stationary energy, mainly power generation, is responsible for about half of Australia’s greenhouse gas emissions. Because this is also a sector where low emissions technologies are already available, it is expected that much of the heavy-lifting in regard to greenhouse gas mitigation will have to come from this sector. Much of the new investment in the power generation sector to 2020 will come from renewables so as to meet the RET, which equates to around 45,000 GWh of renewable generation by 2020. But what of base load generation? Apart from geothermal, that has yet to be technically and commercially proven in Australia, renewables are generally ill-suited to base load generation. Base load power in Australia has traditionally been provided by black and brown coal and with its high emissions it is unlikely to be seen as a future option in a carbon-constrained world. Lower emissions options for base load generation include: coal with carbon capture and storage (CCS); geothermal energy; nuclear energy; and, combined cycle gas turbine (CCGT). The first three options are all problematic in Australia, and would not be able to provide significant generation capacity before 2020.


Sign in / Sign up

Export Citation Format

Share Document