The DNA methyl transferase inhibitor, 5′-aza-2-deoxycitidine, enhances the apoptotic effect of Mevastatin in human leukemia HL-60 cells

2013 ◽  
Vol 33 (4) ◽  
pp. 414-423 ◽  
Author(s):  
A Yilmaz ◽  
S Menevse ◽  
E Konac ◽  
E Alp

Statins induce antiproliferative effects and apoptotic response in various cancer cell types. Moreover, they also sensitize tumor cell lines from different origins to many agents. We aimed to investigate possible effects of Mevastatin (Mev) alone and sequential treatment of 5′-aza-2-deoxycitidine (DAC) and Mev on HL-60 cell line using XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay, lactate dehydrogenase release assay, flourescence microscopy, DNA fragmentation analysis, determination of DNA synthesis rate, and active caspase-3 assay. Messenger RNA (mRNA) expression of apoptotic and antiapoptotic genes were also evaluated by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) for BAX, BCL2, and XIAP genes and quantitative Real-time PCR for CASP3, CASP8, and CASP9 genes. We showed that treatment with Mev alone and DAC followed by Mev resulted in apoptotic response in a time- and dose-dependent manner. We also found that pretreatment with DAC sensitized HL-60 cells to Mev and caused more apoptotic cell death than Mev-alone treatment via caspase-3 activation and DNA fragmentation. Moreover, sequential addition of Mev after DAC diminished DNA synthesis rate more effectively than Mev-alone treatment. Furthermore, DAC pretreatment significantly increased CASP3 and CASP9 mRNA expression even with lower doses of Mev. BAX, BCL2, and XIAP gene mRNA levels were also found to be changed in the presence of DAC and Mev. Determination of the exact molecular effects of statins and DAC would allow us to identify new molecular targets to develop more effective treatment regimens for cancer.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Prisca Bustamante Alvarez ◽  
Alexander Laskaris ◽  
Alicia A. Goyeneche ◽  
Yunxi Chen ◽  
Carlos M. Telleria ◽  
...  

Abstract Background Uveal melanoma (UM), the most prevalent intraocular tumor in adults, is a highly metastatic and drug resistant lesion. Recent studies have demonstrated cytotoxic and anti-metastatic effects of the antiprogestin and antiglucocorticoid mifepristone (MF) in vitro and in clinical trials involving meningioma, colon, breast, and ovarian cancers. Drug repurposing is a cost-effective approach to bring approved drugs with good safety profiles to the clinic. This current study assessed the cytotoxic effects of MF in human UM cell lines of different genetic backgrounds. Methods The effects of incremental concentrations of MF (0, 5, 10, 20, or 40 μM) on a panel of human UM primary (MEL270, 92.1, MP41, and MP46) and metastatic (OMM2.5) cells were evaluated. Cells were incubated with MF for up to 72 h before subsequent assays were conducted. Cellular functionality and viability were assessed by Cell Counting Kit-8, trypan blue exclusion assay, and quantitative label-free IncuCyte live-cell analysis. Cell death was analyzed by binding of Annexin V-FITC and/or PI, caspase-3/7 activity, and DNA fragmentation. Additionally, the release of cell-free DNA was assessed by droplet digital PCR, while the expression of progesterone and glucocorticoid receptors was determined by quantitative real-time reverse transcriptase PCR. Results MF treatment reduced cellular proliferation and viability of all UM cell lines studied in a concentration-dependent manner. A reduction in cell growth was observed at lower concentrations of MF, with evidence of cell death at higher concentrations. A significant increase in Annexin V-FITC and PI double positive cells, caspase-3/7 activity, DNA fragmentation, and cell-free DNA release suggests potent cytotoxicity of MF. None of the tested human UM cells expressed the classical progesterone receptor in the absence or presence of MF treatment, suggesting a mechanism independent of the modulation of the cognate nuclear progesterone receptor. In turn, all cells expressed non-classical progesterone receptors and the glucocorticoid receptor. Conclusion This study demonstrates that MF impedes the proliferation of UM cells in a concentration-dependent manner. We report that MF treatment at lower concentrations results in cell growth arrest, while increasing the concentration leads to lethality. MF, which has a good safety profile, could be a reliable adjuvant of a repurposing therapy against UM.


2018 ◽  
Vol 17 (7) ◽  
pp. 975-983 ◽  
Author(s):  
Luiz Philippe da Silva Sergio ◽  
Andrezza Maria Côrtes Thomé ◽  
Larissa Alexsandra da Silva Neto Trajano ◽  
Andre Luiz Mencalha ◽  
Adenilson de Souza da Fonseca ◽  
...  

Acute lung injury (ALI) is defined as hyperinflammation that could occur from sepsis and lead to pulmonary permeability and edema, making them life-threatening diseases.


2007 ◽  
Vol 292 (6) ◽  
pp. F1710-F1717 ◽  
Author(s):  
Cheng Yang ◽  
Varsha Kaushal ◽  
Sudhir V. Shah ◽  
Gur P. Kaushal

Mcl-1 is an antiapoptotic member of the Bcl-2 family that plays an important role in cell survival. We demonstrate that proteasome-dependent regulation of Mcl-1 plays a critical role in renal tubular epithelial cell injury from cisplatin. Protein levels of Mcl-1 rapidly declined in a time-dependent manner following cisplatin treatment of LLC-PK1cells. However, mRNA levels of Mcl-1 were not altered following cisplatin treatment. Expression of other antiapoptotic members of the Bcl-2 family such as Bcl-2 and BclxL was not affected by cisplatin treatment. Cisplatin-induced loss of Mcl-1 occurs at the same time as the mitochondrial release of cytochrome c, activation of caspase-3, and initiation of apoptosis. Treatment of cells with cycloheximide, a protein synthesis inhibitor, revealed rapid turnover of Mcl-1. In addition, treatment with cycloheximide in the presence or absence of cisplatin demonstrated that cisplatin-induced loss of Mcl-1 results from posttranslational degradation rather than transcriptional inhibition. Overexpression of Mcl-1 protected cells from cisplatin-induced caspase-3 activation and apoptosis. Preincubating cells with the proteasome inhibitor MG-132 or lactacystin not only restored cisplatin-induced loss of Mcl-1 but also resulted in an accumulation of Mcl-1 that exceeded basal levels; however, Bcl-2 and BclxL levels did not change in response to MG-132 or lactacystin. The proteasome inhibitors effectively blocked cisplatin-induced mitochondrial release of cytochrome c, caspase-3 activation, and apoptosis. These studies suggest that proteasome regulation of Mcl-1 is crucial in the cisplatin-induced apoptosis via the mitochondrial apoptotic pathway and that Mcl-1 is an important therapeutic target in cisplatin injury to renal tubular epithelial cells.


2006 ◽  
Vol 80 (16) ◽  
pp. 7807-7815 ◽  
Author(s):  
Jennifer M. Timpe ◽  
Kristin C. Verrill ◽  
James P. Trempe

ABSTRACT Adeno-associated virus (AAV) is a nonpathogenic parvovirus that requires adenovirus (Ad) or another helper virus for a fully permissive infection. AAV-mediated inhibition of Ad is well documented, yet many details of this interaction remain unclear. In this study, we observed a maximum 50-fold decrease in infectious virus production and a 10- to 40-fold reduction in Ad DNA synthesis during coinfections with AAV. With the exception of the E3 gene, AAV decreased all steady-state Ad mRNA levels at 24 h postinfection (hpi) in a dose-dependent manner. However, not all transcription units were affected equally. E4 and late transcription were the most strongly inhibited, and E1A and E2A were the least affected. The temporal effects of AAV on Ad mRNA transcript levels also varied among the Ad genes. Ad protein expression paralleled mRNA levels at 24 hpi, suggesting that coinfecting AAV does not exert substantial effects on translation. In plasmid transfection assays, Rep78 protein most effectively limited Ad amplification, while Rep40 had no effect. Since E2a and E4 proteins are essential for efficient Ad DNA amplification, we examined the relationship between reduced E2A and E4 expression and decreased DNA amplification. Transfected Rep78 did not reduce E2A and E4 transcript levels prior to DNA replication. Also, AAV-induced inhibition of E2A and E4 mRNA production did not occur in the presence of hydroxyurea. It is therefore unlikely that decreased early gene expression is solely responsible for AAV's suppression of Ad DNA replication. Our results suggest that AAV amplification and/or Rep gene expression inhibits Ad DNA synthesis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5059-5059
Author(s):  
Bao-An Chen ◽  
Jue-qiong Wang ◽  
Jian Cheng ◽  
Feng Gao ◽  
Wen-lin Xu ◽  
...  

Abstract Objective This study was to compare the reversal effect of 5-bromotetrandrine (BrTet) with Tetrandrine (Tet) when combined with ADM on multidrug resistance cell line K562/A02 and to investigate the reversal mechanism of this new derivative. Methods The protein levels of P-glycoprotein (P-gp) were detected by fluorospectrophotometry and Western blot. The mRNA levels of P-gp were determined by RT-PCR. The in vivo effect of Tet was investigated using nude mice grafted with sensitive human leukemia cell line K562 and MDR cell line K562/A02. Results Flow cytometry assay showed that 1.0 μMol/L BrTet significantly increased the apoptosis percentage. BrTet also enhanced the intracellular accumulation of ADM in K562/A02 cells and its potency was greater than that of Tet at the same concentrations. BrTet inhibited the overexpression of P-gp and down regulated MDR1 mRNA expression in K562/A02 cells in a dose-dependent manner. In nude mice bearing K562 xenografts on the left flank and K562/A02 xenografts on the right flank, i.p. injection of 10 mg/kg BrTet significantly enhanced the antitumor activity of ADM against K562/A02 xenografts with inhibitory rates of 26.1%, while ADM alone inhibited the growth of KBv200 xenografts by only 5.8%. Conclusion BrTet showed significant MDR reversal activity in vitro and in vivo. Its activity may be related to the inhibition of P-gp overexpression and the increase in intracellular accumulation of anticancer drugs, which lead to more K562/A02 cells apoptosis.


2005 ◽  
Vol 186 (1) ◽  
pp. 109-121 ◽  
Author(s):  
M-O Faure ◽  
L Nicol ◽  
S Fabre ◽  
J Fontaine ◽  
N Mohoric ◽  
...  

Activins and inhibins, members of the transforming growth factor-beta family are able to stimulate and inhibit, respectively, FSH synthesis and release. Other members of this superfamily, the bone morphogenetic proteins (BMPs), may also affect FSH synthesis in the mouse. The aim of this work was to determine whether BMPs are expressed in the ovine pituitary and whether they play a role in the regulation of FSH release. The mRNAs encoding BMP-2, BMP-4, BMP-7 and the oocyte-derived growth factor, growth differentiation factor (GDF)-9 were detected in the pituitaries of cyclic ewes by reverse-transcriptase PCR, as well as the mRNAs encoding the BMP type I receptors, BMPR-IA (activin-receptor-like kinase (ALK)-3) and BMPR-IB (ALK-6), and type II receptors (BMPR-II). Immunolabeling of pituitary sections revealed the presence of BMPR-IA (ALK-3) and BMPR-II in gonadotrope cells. To investigate the potential effects of BMPs on FSH secretion, ewe pituitary cell cultures were treated with BMP-4 (10−11 M to 10−9 M) for 48 h. Interestingly, FSH release was decreased in a dose-dependent manner. At 10−9 M BMP-4 both FSH concentration and FSHβ mRNA expression were reduced by 40% of control values. In contrast, there was no inhibitory effect on either LH or LHβ mRNA expression. A similar result was found with BMP-6. BMP-4 triggered the phosphorylation of Smad1, suggesting that the effect of BMP-4 on FSH secretion is due to the activation of the BMPs signaling pathway. Furthermore, BMP-4 blocked the stimulatory effect of activin on both FSH release and FSHβ mRNA and amplified the suppression of FSH release and FSHβ mRNA levels induced by 17β-estradiol. These results indicate that a functional BMP system operates within the sheep pituitary, at least in vitro, to decrease FSH release and to modulate the effect of activin.


Reproduction ◽  
2011 ◽  
Vol 142 (6) ◽  
pp. 855-867 ◽  
Author(s):  
Hollian R Phillipps ◽  
Ilona C Kokay ◽  
David R Grattan ◽  
Peter R Hurst

X-linked inhibitor of apoptosis protein (XIAP) interacts with caspases to inhibit their activity, thereby providing a potential mechanism for regulation of granulosa cell apoptosis occurring during follicular atresia. The aim of this study was to determine the presence and localization of XIAP mRNA and protein content in the sheep ovary and compare these expression patterns with active caspase-3 protein in the same antral follicles. Romney ewe estrous cycles (n=25) were synchronized with 2–3 Estrumate injections and ovarian tissue collected during the luteal and follicular phases of the cycle. The presence ofXIAPmRNA was confirmed by RT-PCR using laser capture microdissected ovarian cell samples.XIAPmRNA was subsequently localized byin situhybridization histochemistry and XIAP and active caspase-3 protein visualized by immunohistochemistry. In antral follicles extensive XIAP localization was evident in both granulosa and thecal cells. In contrast, mRNA expression was widespread in granulosa cells and only detected in thecal tissue from a small proportion of antral follicles. Active caspase-3 and XIAP comparative expression analysis showed positiveXIAPmRNA expression in all late luteal phase (day 14) follicles, despite varying levels of active caspase-3 protein. A proportion of follicular phase (days 15 and 16) follicles, however, showed an inverse expression relationship at the protein and mRNA levels in both granulosa and thecal tissue, as did XIAP protein in day 14 follicles. These results suggest high XIAP may prevent activation of caspase-3, thereby regulating follicular atresia in antral follicles and could potentially be utilized as a marker of follicular health.


2017 ◽  
Vol 4 (S) ◽  
pp. 174
Author(s):  
Sinh Truong Nguyen ◽  
Phuc Hong Vo ◽  
Oanh Thi-Kieu Nguyen ◽  
Nghia Minh Do ◽  
Phuc Van Pham

PURPOSES: Cancer cells were observed to increase glucose uptake and fermentation of glucose to lactate to to synthesis rapidly ATP for cell growth, survival and proliferation. Thus, inhibition of glycolysis might be useful in antitumor treatment. This phenomenon occurred even with fully functioning mitochondria, and known as Warberg effect. Sodium citrate, an inhibitor of Warberg effect, was reported to antiproliferate many cancer cells line. However, sodium citrate has not been studied in Hepatocellular Carcinoma cells line yet. Here we aimed to investigate the effect of sodium citrate in HepG2 cells line.   MATERIAL AND METHODS: HepG2 cell lines was treated with sodium citrate at different concentrations. Viable cells were determined by Alamar Blue. The apoptosis induced-cells was detected by Annexin V with FCM technique. Disintegrated nuclei and DNA fragmentation was analyzed. The activity of caspase-3 was also tested.   RESULTS: We observed that the IC50 value of sodium citrate on HepG2 is at 10mM. FCM analysis showed that sodium citrate induced apoptosis in HepG2 cell line in dose-dependent manner. At 10mM sodium citrate, the caspase-3/7 was observed to be activated in time-dependent manner. Sodium citrate also induced nuclei disintergated in HepG2. DNA fragmentation was observed when HepG2 cells were treated with 10mM sodium citrate.   CONCLUSIONS: We have shown that sodium citrate possesses the antiproliferative ability on HepG2 at IC50 10mM. Sodidum citrate induces apoptosis cells in hepatocellular carcinoma HepG2 by capases-3 activation. More investigation of glycolysis inhibition of sodium citrate on HepG2 should be performed in animals


2017 ◽  
Vol 45 (07) ◽  
pp. 1497-1511 ◽  
Author(s):  
Shinya Okubo ◽  
Takuhiro Uto ◽  
Aya Goto ◽  
Hiroyuki Tanaka ◽  
Tsuyoshi Nishioku ◽  
...  

Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5[Formula: see text]min to 15[Formula: see text]min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an [Formula: see text]-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.


2013 ◽  
Vol 25 (6) ◽  
pp. 890 ◽  
Author(s):  
Ester Siqueira Caixeta ◽  
Mariana Fernandes Machado ◽  
Paula Ripamonte ◽  
Christopher Price ◽  
José Buratini

FSH induces expansion of bovine cumulus–oocyte complexes (COCs) in cattle, which can be enhanced by oocyte-secreted factors (OSFs). In this study it was hypothesised that FSH stimulates COC expansion in part from direct stimulation of the epidermal growth factor (EGF)-like ligands amphiregulin (AREG), epiregulin (EREG) and betacellulin (BTC), but also in part through regulation of OSFs or their receptors in cumulus cells. Bovine COCs were cultured in defined medium with graded doses of FSH. In the absence of FSH, COCs did not expand. FSH caused cumulus expansion, and increased the abundance of AREG and EREG mRNA in a time- and dose-dependent manner, but decreased BTC mRNA levels. FSH had modest stimulatory effects on the levels of mRNA encoding the bone morphogenetic protein 15 (BMP15) receptor, BMPR1B, in cumulus cells, but did not alter mRNA expression of the growth and differentiation factor 9 (GDF9) receptor, TGFBR1. More interestingly, FSH dramatically stimulated levels of mRNA encoding two receptors for fibroblast growth factors (FGF), FGFR2C and FGFR3C, in cumulus cells. FSH also stimulated mRNA expression of FGFR1B, but not of FGFR2B in cumulus cells. Based on dose-response studies, FGFR3C was the receptor most sensitive to the influence of FSH. This study demonstrates that FSH stimulates the expression of EGF-like factors in bovine cumulus cells, and provides evidence that FSH differently regulates the expression of distinct receptors for OSFs in cumulus cells.


Sign in / Sign up

Export Citation Format

Share Document