Potential Advantages of Poly(Acrylonitrile-Co-Methyl Acrylate)/Sodium Silicate Nanocomposites over P(An-Co-Ma) Copolymer

2009 ◽  
Vol 17 (6) ◽  
pp. 385-394
Author(s):  
Bijayashree Samal ◽  
Pradeep Kumar Rana ◽  
Prafulla Kumar Sahoo

Poly (acrylonitrile-co-methyl acrylate) copolymer and P(AN-co-MA)/sodium silicate (SS) nanocomposite were synthesized via non-conventional emulsion method using an in situ transition metal complex Co(II)/EDTA and ammonium persulfate (APS) as initiator. The copolymer and nanocomposite so obtained were characterized and the results were compared. UV-visible spectral analysis revealed various interactions between the in situ complex and other reaction components. Infrared and 1H NMR spectra confirmed the formation of the P(AN-co-MA) copolymer and P(AN-co-MA)/SS nanocomposite. Furthermore, as evidenced by transmission electron microscopy (TEM), the composite obtained was found to have nano scale structure. X-ray diffraction (XRD) studies were carried out to analyze the aqueous dispersions of silicate with monomers, initiators, and monomers with initiators. For P(AN-co-MA) copolymer and P(AN-co-MA)/SS nanocomposite, XRD results confirmed that the silicate layers were exfoliated in the copolymer matrix during the polymerization process. An increase in the thermal stability for the nanocomposite was recorded by thermo gravimetric analysis (TGA). In comparison with the P(AN-co-MA) copolymer, the new P(AN-co-MA)/SS nanocomposite was found to show super absorbency and was biodegradable when tested by soil burial, activated sludge and cultured media and further confirmed by scanning electron microscopy (SEM).

2010 ◽  
Vol 148-149 ◽  
pp. 1547-1550 ◽  
Author(s):  
Hua Lan Wang ◽  
Qing Li Hao ◽  
Xi Feng Xia ◽  
Zhi Jia Wang ◽  
Jiao Tian ◽  
...  

A graphene oxide/polyaniline composite was synthesized by an in situ polymerization process. This product was simply prepared in an ethylene glycol medium, using ammonium persulfate as oxidant in ice bath. The composite was characterized by field emission scanning electron microscopy, transmission electron microscopy, X-Ray photoelectron spectroscopy, Raman spectroscopy and electrochemical test. The composite material showed a good electrochemical performance.


2019 ◽  
Vol 14 ◽  
pp. 155892501982744 ◽  
Author(s):  
Juan Xie ◽  
Wei Pan ◽  
Zheng Guo ◽  
Shan Shan Jiao ◽  
Ling Ping Yang

Polypyrrole/cotton composites have substantial application potential in flexible heating devices due to their flexibility, high conductivity, and thermal stability. In this context, a series of flexible polypyrrole/cotton fabrics were intrinsically prepared using in situ polymerization process with the different Py/FeCl3 concentration ratios. To investigate their structural and morphological properties, thermal stability, tensile strength, conductivity, and heat-generating property, the composite fabrics were subjected to Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, thermo-gravimetric analysis, mechanical properties, and resistivity measurements. The results showed that polypyrrole/cotton fabrics exhibited a low resistivity of 0.37 Ω cm. Temperature–time curve showed that temperature of the polypyrrole/cotton fabrics increased very quickly from room temperature to a steady-state maximum temperature of 168.3°C within 3 min at applied voltage of 5 V. Tensile strength of polypyrrole/cotton composites reached to 58 MPa, which far surpassed raw cotton fabrics. Therefore, polypyrrole/cotton fabrics have exhibited high electrical, thermal properties, and mechanical strength, which can be utilized as an ideal flexible heating element.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Luqman Ali Shah ◽  
Rida Javed ◽  
Mohammad Siddiq ◽  
Iram BiBi ◽  
Ishrat Jamil ◽  
...  

AbstractThe in-situ stabilization of Ag nanoparticles is carried out by the use of reducing agent and synthesized three different types of hydrogen (anionic, cationic, and neutral) template. The morphology, constitution and thermal stability of the synthesized pure and Ag-entrapped hybrid hydrogels were efficiently confirmed using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). The prepared hybrid hydrogels were used in the decolorization of methylene blue (MB) and azo dyes congo red (CR), methyl Orange (MO), and reduction of 4-nitrophenol (4-NP) and nitrobenzene (NB) by an electron donor NaBH4. The kinetics of the reduction reaction was also assessed to determine the activation parameters. The hybrid hydrogen catalysts were recovered by filtration and used continuously up to six times with 98% conversion of pollutants without substantial loss in catalytic activity. It was observed that these types of hydrogel systems can be used for the conversion of pollutants from waste water into useful products.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3510
Author(s):  
Kirill Cherednichenko ◽  
Dmitry Kopitsyn ◽  
Svetlana Batasheva ◽  
Rawil Fakhrullin

Halloysite is a tubular clay nanomaterial of the kaolin group with a characteristic feature of oppositely charged outer and inner surfaces, allowing its selective spatial modification. The natural origin and specific properties of halloysite make it a potent material for inclusion in biopolymer composites with polysaccharides, nucleic acids and proteins. The applications of halloysite/biopolymer composites range from drug delivery and tissue engineering to food packaging and the creation of stable enzyme-based catalysts. Another important application field for the halloysite complexes with biopolymers is surface coatings resistant to formation of microbial biofilms (elaborated communities of various microorganisms attached to biotic or abiotic surfaces and embedded in an extracellular polymeric matrix). Within biofilms, the microorganisms are protected from the action of antibiotics, engendering the problem of hard-to-treat recurrent infectious diseases. The clay/biopolymer composites can be characterized by a number of methods, including dynamic light scattering, thermo gravimetric analysis, Fourier-transform infrared spectroscopy as well as a range of microscopic techniques. However, most of the above methods provide general information about a bulk sample. In contrast, the combination of electron microscopy with energy-dispersive X-ray spectroscopy allows assessment of the appearance and composition of biopolymeric coatings on individual nanotubes or the distribution of the nanotubes in biopolymeric matrices. In this review, recent contributions of electron microscopy to the studies of halloysite/biopolymer composites are reviewed along with the challenges and perspectives in the field.


2015 ◽  
Vol 35 (6) ◽  
pp. 597-603 ◽  
Author(s):  
Mohsen Khademian ◽  
Hossein Eisazadeh

Abstract Emulsion nanoparticles of polyaniline (PANI) were synthesized in the aqueous media by using hydroxylpropylcellulose (HPC) as a stabilizer and ammonium persulfate as an oxidant in the presence of TiO2 with nanometer size. New poly(vinyl acetate) (PVAc) coating over carbon steel was prepared by addition of emulsion nanoparticles in different concentrations (1%, 2% and 1.5%) in PVAc as the major matrix. The Tafel plot records were used for the definition of potential and corrosion current (Icorr). Nanoparticles were characterized and compared by X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By adding TiO2, the thermal stability of the nanocomposite increased. A small size of colloidal particles prevented the precipitation of conducting polymer particles and led to better dispersion of nanocomposites in the matrix of the PVAc binder; therefore, the paint was homogeneous and anticorrosion properties of the coating increased. According to the results, 1.5% of PANI-TiO2 nanocomposite in PVAc has a much lower Icorr in NaCl aqueous solution and 2% of PANI-TiO2 nanocomposite in PVAc has the best corrosion protection in HCl.


2007 ◽  
Vol 336-338 ◽  
pp. 1849-1852 ◽  
Author(s):  
Hansu Birol ◽  
Thomas Maeder ◽  
Caroline Jacq ◽  
Giancarlo Corradini ◽  
Marc Boers ◽  
...  

The purpose of this paper is to demonstrate sensors and structures fabricated using the LTCC technology, which has been addressed and employed increasingly as a smart packaging approach for several applications. The focus will be on inclination and cantilever force sensors and micro-fluidic structures. Motivation for selection of LTCC for these applications in addition to fabrication and structuring of the devices will be explained in details. TGA (thermo-gravimetric analysis), dilatometer analysis, SEM (scanning electron microscopy), electronic equipment for measuring sensor performance will be extensively used for explanation of the results. It will also be shown that, compared to classical thick-film technology on alumina, LTCC allows a considerable increase in sensitivity, and is therefore better suited for the sensing of minute forces and pressures.


2019 ◽  
Vol 11 (11) ◽  
pp. 1064-1070 ◽  
Author(s):  
Nkosinathi G. Dlamini ◽  
Albertus K. Basson ◽  
V. S. R. Rajasekhar Pullabhotla

Bioflocculant from Alcaligenis faecalis HCB2 was used in the eco-friendly synthesis of the copper nanoparticles. Nanoparticles were characterized using a scanning electron microscope (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy, thermo gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). The transmission electron microscopy images showed close to spherical shapes with an average particle size of ∼53 nm. Energy-dispersive X-ray spectroscopy analysis confirmed the presence of the Cu nanopartilces and also the other elements such as O, C, P, Ca, Cl, Na, K, Mg, and S originated from the bioflocculant. FT-IR results showed the presence of the –OH and –NH2 groups, aliphatic bonds, amide and Cu–O bonds. Powder X-ray diffraction peaks confirmed the presence of (111) and (220) planes of fcc structure at 2 of 33° and 47° respectively with no other impurity peaks.


2016 ◽  
Vol 27 (2) ◽  
pp. 60 ◽  
Author(s):  
Rudzani A Sigwadi ◽  
Sipho E Mavundla ◽  
Nosipho Moloto ◽  
Touhami Mokrani

Zirconia nanoparticles were prepared by the precipitation and ageing methods. The precipitation method was performed by adding ammonium solution to the aqueous solution of zirconium chloride at room temperature. The ageing method was performed by leaving the precipitate formed in the mother liquor in the glass beaker for 48 hours at ambient temperatures. The nanoparticles from both methods were further sulphated and phosphated to increase their acid sites. The materials prepared were characterised by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), Brunauer-EmmettTeller (BET), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) methods. The XRD results showed that the nanoparticles prepared by the precipitation method contained mixed phases of tetragonal and monoclinic phases, whereas the nanoparticles prepared by ageing method had only tetragonal phase. The TEM results showed that phosphated and sulphated zirconia nanoparticles obtained from the ageing method had a smaller particle size (10–12 nm) than the nanoparticles of approximately 25–30 nm prepared by precipitation only. The BET results showed that the ZrO2 nanoparticles surface area increased from 32 to 72 m2/g when aged.


Sign in / Sign up

Export Citation Format

Share Document