Removal of Methyl Orange from Aqueous Solution by Adsorption onto a Hydrogel Composite

2018 ◽  
Vol 26 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Yaoji Tang ◽  
Rui Yang ◽  
Dong Ma ◽  
Bin Zhou ◽  
Linhui Zhu ◽  
...  

Poly(acrylic acid- co-2-acrylamide-2-methyl-1-propanesulfonic acid)/kaolin hydrogel composite was synthesised using acrylic acid (AA), 2-acrylamide-2-methyl-1-propanesulfonic acid (AMPS) and kaolin (KL) as main materials. The composite was characterised and used to remove methyl orange (MO) from aqueous solutions. Effect of adsorption conditions, including initial concentration of MO, contact time, pH values and ionic strength, on the adsorption capacities was studied. Maximal adsorption capacity was 506 mg/g as the initial concentration of MO was 1000 mg/L. It showed that the adsorption process was spontaneous, and the isotherms and kinetics were in good agreement with the Freundlich isotherm model and pseudo-second-order equation, respectively.

2015 ◽  
Vol 93 (10) ◽  
pp. 1083-1087 ◽  
Author(s):  
Ali Issa Ismail

Graphene is a newly discovered material and is considered to be the new wonder material for many applications. The recent possibility of obtaining pure and fully characterized graphene opens the door to the study of the adsorption of toxic materials on graphene. The adsorption behavior of p-nitrophenol on graphene was studied in aqueous medium. The effect of each of pH, temperature, and dosage was emphasized. The highest calculated adsorption capacity of 4-nitrophenol was found to be 15.5 mg/g, assuming Langmuir fitting starting from 11.1 mg/g initial concentration at 298 K and pH = 6. Fitting the data using the Freundlich isotherm model predicted a favorable adsorption process (n > 1). The rise and saturation areas of the isotherms were fitted as pseudo first-order and pseudo second-order processes, respectively, with relatively good fit (k1 = 0.0023/s, k2 = 0.68 g mg−1 s−1). The thermodynamic properties indicated a spontaneous and exothermic process.


2013 ◽  
Vol 684 ◽  
pp. 194-197
Author(s):  
Yi Ke Li ◽  
Bing Lu Zhao ◽  
Wei Xiao ◽  
Run Ping Han ◽  
Yan Qiang Li

The effect of contact time and the determination of the kinetic parameters of adsorption of methyl orange (MO) from aqueous solution onto Iron-Oxide-Coated-Zeolite (IOCZ) powder are important in understanding the adsorption mechanism. The effect of contact time on adsorption quantity was studied at different initial concentration and temperature, respectively. The pseudo-second-order model was adopted to fit the experimental data using non-linear regressive analysis and it was used to predict the adsorption behavior. The results showed that the process of adsorption MO was endothermic and chemisorption. The pore diffusion was not significant.


2012 ◽  
Vol 602-604 ◽  
pp. 1211-1214
Author(s):  
Zhi Wen Luo ◽  
Zhong Chen ◽  
Su Hong Liu

Diatomite was modified by microwave treatment to increase their utilization value, using modified diatomite to treat ammonia-nitrogen wastewater. The experiment indicated that adsorption process of modification of the modified time by microwaves and microwave power is the impact of ammonia adsorption of the main factors. Through modification experiments by raising the capacity of diatomite adsorption ammonia nitrogen, adsorption of ammonia nitrogen increase over one time. Langmuir and Freundlich isotherms were used to fit and the experimental results show that the modified diatomite adsorption onto ammonia nitrogen accords with Langmuir and Freundlich isotherm. The maximum theoretical adsorption capacities are 5.81083mg/g.


2021 ◽  
Vol 348 ◽  
pp. 01016
Author(s):  
Rajaa Bassam ◽  
Marouane El Alouani ◽  
Nabila Jarmouni ◽  
Jabrane Maissara ◽  
Mohammed El Mahi Chbihi ◽  
...  

Heavy metals are the most dangerous inorganic pollutants Due to their bioaccumulation and their nonbiodegradability, for this, several studies have focused on the recovery of these metals from water using different techniques. In this context, our study consists of evaluating an efficient and eco-friendly pathway of competitive recovery of heavy metals (Cd, Cr and As) from aqueous solutions by adsorption using raw rock. This adsorbent was characterized before and after the adsorption process by several techniques. The multi-metals adsorption process in the batch mode was undertaken to evaluate the effect of adsorbent mass, contact time, pH, Temperature, and initial heavy metals concentration. The kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. According to the modeling of the experimental results, the adsorption kinetics of heavy metals were adapted to the pseudo-second-order model. The adsorption isotherms were evaluated by the Langmuir and Freundlich isotherm models. The experimental isotherm data of heavy metals were better fitted with the Langmuir model rather than Freundlich isotherm models. The maximum experimental adsorption capacities (Qmax) predicted by the Langmuir model are 15.23 mg/g for Cd (II), 17.54 mg/g for Cr (VI) and 16.36 mg/g for As (III). The values of thermodynamic parameters revealed that the heavy metals adsorption was exothermic, favorable, and spontaneous in nature. The desorption process of heavy metals showed that this raw rock had excellent recycling capacity. Based on the results, these untreated clays can be used as inexpensive and environmentally friendly adsorbents to treat water contaminated by heavy metals.


2017 ◽  
Vol 2 (1) ◽  
pp. 13-26
Author(s):  
Tengku Khamanur Azma Tg. Mohd Zamri ◽  
Mimi Sakinah Abd Munaim ◽  
Zularisam Ab Wahid

Natural dye extracted from the rhizome of Curcuma longa L. were applied to bamboo yarns using exhaustion dyeing process. This study investigates the dyeing behaviour of Curcumin; the major color component isolated from rhizomes of Curcuma longa L.on bamboo yarn. Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models were used to test the adsorption process of curcumin on bamboo yarn. Comparison of regression coefficient value indicated that the Freundlich isotherm most fitted to the adsorption of curcumin onto bamboo yarn. Furthermore, the kinetics study on this research fitted the pseudo-second order model which indicates that the basis of interaction was chemical adsorption.


2020 ◽  
Vol 1 (2) ◽  
pp. 54-62
Author(s):  
Naser Al Amery ◽  
Hussein Rasool Abid ◽  
Shaobin Wang ◽  
Shaomin Liu

In this study, two improved versions of UiO-66 were successfully synthesised. Modified UiO-66 and UiO-66-Ce were characterised to confirm the integrity of the structure, the stability of functional groups on the surface and the thermal stability. Activated samples were used for removal harmful anionic dye (methyl orange) (MO) from wastewater. Batch adsorption process was relied to investigate the competition between those MOFs for removing MO from aqueous solution. Based on the results, at a higher initial concentration, the maximum MO uptake was achieved by UiO-66-Ce which was better than modified-UiO-66. They adsorbed 71.5 and 62.5 mg g-1 respectively. Langmuir and Freundlich isotherms were employed to simulate the experimental data. In addition, Pseudo first order and Pseudo second order equations were used to describe the dynamic behaviour of MO through the adsorption process. The high adsorption capacities on these adsorbents can make them promised adsorbents in industrial areas.


Author(s):  
Jurgita Seniūnaitė ◽  
Rasa Vaiškūnaitė ◽  
Kristina Bazienė

Research studies on the adsorption kinetics are conducted in order to determine the absorption time of heavy metals on coffee grounds from liquid. The models of adsorption kinetics and adsorption diffusion are based on mathe-matical models (Cho et al. 2005). The adsorption kinetics can provide information on the mechanisms occurring be-tween adsorbates and adsorbents and give an understanding of the adsorption process. In the mathematical modelling of processes, Lagergren’s pseudo-first- and pseudo-second-order kinetics and the intra-particle diffusion models are usually applied. The mathematical modelling has shown that the kinetics of the adsorption process of heavy metals (copper (Cu) and lead (Pb)) is more appropriately described by the Lagergren’s pseudo-second-order kinetic model. The kinetic constants (k2Cu = 0.117; k2Pb = 0,037 min−1) and the sorption process speed (k2qeCu = 0.0058–0.4975; k2qePb = 0.021–0.1661 mg/g per min) were calculated. After completing the mathematical modelling it was calculated that the Langmuir isotherm better reflects the sorption processes of copper (Cu) (R2 = 0.950), whilst the Freundlich isotherm – the sorption processes of lead (Pb) (R2 = 0.925). The difference between the mathematically modelled and experimen-tally obtained sorption capacities for removal of heavy metals on coffee grounds from aqueous solutions is 0.059–0.164 mg/l for copper and 0.004–0.285 mg/l for lead. Residual concentrations of metals in a solution showed difference of 1.01 and 0.96 mg/l, respectively.


2020 ◽  
Vol 81 (1) ◽  
pp. 159-169
Author(s):  
Feyza Ergüvenerler ◽  
Şerif Targan ◽  
Vedia Nüket Tirtom

Abstract Simple, fast, effective, low cost and waste biosorbents, lemon, bean and artichoke shells, were used to remove lead (II) ions from aqueous solution. The influence of pH, contact time, temperature and lead (II) concentration of the removal process was investigated. The sufficient contact time was deemed 10 minutes for bean and artichoke shells and 60 minutes for lemon shells for Pb(II) ions. The thermodynamic parameters, such as standard free energy (ΔG), standard enthalpy (ΔH), and standard entropy (ΔS) of the adsorption process were calculated as −5.6786, −5.5758, −3.1488 kJmol−1 for ΔG, −7.2791, −20.285, −9.5561 kJ mol−1 for ΔH, −0.00545, −0.05017, −0.02185 kJ mol−1 K−1 for ΔS, respectively, for lemon, artichoke and bean shells. Maximum adsorption capacities of lead (II) were observed as 61.30 mg g−1, 88.5 mg g−1 and 62.81 mg g−1, respectively, for lemon, bean and artichoke shells according to the Freundlich isotherm model at 20 °C. Scanning electron microscope (SEM) and energy-dispersive X-ray detector (EDX) were used to characterize the surface morphology of the adsorbents. Consequently, Pb(II) removal using lemon, bean and artichoke shells would be an effective method for the economic treatment of wastewater.


2017 ◽  
Vol 25 (8) ◽  
pp. 627-634 ◽  
Author(s):  
Linhui Zhu ◽  
Chengdong Guan ◽  
Bin Zhou ◽  
Zhentao Zhang ◽  
Rui Yang ◽  
...  

Adsorption of four dyes, namely methyl violet (MV), rhodamine 6G (R6G), acid chrome blue K (AK) and xylenol orange (XO) onto sodium alginate graft poly(acrylic acid-co-2-acrylamide-2-methyl-1-propanesulfonicacid)/kaolin (SA-g-P(AA-co-AMPS)/KL) hydrogel composite is studied. The factors influencing the adsorption capacities, including the initial concentrations of dye solutions, contact time, initial pH values and dosage of the adsorbent as well as ionic strength of the solution are discussed. It is more effective for the composite to adsorb cationic dyes such as MV and R6G rather than anionic dyes AK and XO. The maximum adsorption capacities of MV, R6G, AK and XO are 1361.1, 1627.8, 563.5 and 312.4 mg/g, respectively. The adsorption thermodynamics for the four dyes are in accordance with both the Freudlich and Redlich-Peterson equations. It is shown that adsorption of the cationic dyes R6G and MV is spontaneous, while that of anionic dyes AK and XO is not. The kinetics studies show that the adsorption of the four dyes fitted a pseudo-second-order equation.


2013 ◽  
Vol 368-370 ◽  
pp. 692-696
Author(s):  
Wei Lan Lin ◽  
Jin Chuan Gu ◽  
Yu Heng Wang ◽  
Wen Yuan Wang

adsorption is a good method to remove phosphorus. In the experiment, lithium silica fume is used as the adsorption material, adsorption isotherms ,kinetics and dosage effects were examined. It shows that the adsorption kinetics data are consistent with the pseudo-second-order equation and the adsorption is easy to happen. Freundlich isotherm equation is fit for description of the adsorption. The maximum adsorption capacities on lithium silica fume is 1.166 mg/g. When dosage get to 12 g/l and the concentration of phosphorus solution is 2 mg/l, the removal rate reach to 95% at 308k.


Sign in / Sign up

Export Citation Format

Share Document