Comparative study of flexural and physical properties of graphite-filled immiscible polypropylene/epoxy and high-density polyethylene/epoxy blends

2021 ◽  
pp. 096739112110470
Author(s):  
Oluwaseun Ayotunde Alo ◽  
Iyiola Olatunji Otunniyi

Polypropylene/epoxy/synthetic graphite (PP/EP/SG) and high-density polyethylene (HDPE/EP/SG) composites were prepared by melt mixing followed by compression molding. The immiscibility of the polyolefins with epoxy was confirmed by thermogravimetric analysis. Scanning electron microscopy (SEM) studies showed that HDPE/EP blend exhibits inferior interfacial adhesion between the component polymers compared to PP/EP blend. Also, the effect of SG content on flexural properties, density, moldability, water absorption, and porosity of the PP/EP/SG and HDPE/EP/SG composites was investigated. For both PP/EP/SG and HDPE/EP/SG composites, flexural modulus, density, and porosity increased with increase in SG content. For PP/EP/SG composites, the water absorption decreased from 0.154% at 30 wt% SG to 0.072% at 70 wt% SG. Further increase in SG content to 80 wt% caused an increase in water absorption. On the other hand, water absorption for HDPE/EP/SG increased with SG content all through. At the same filler loadings, PP/EP/SG composites showed lower density and porosity and performed better in terms of flexural modulus and water absorption compared to HDPE/EP/SG composites.

2017 ◽  
Vol 52 (18) ◽  
pp. 2431-2442 ◽  
Author(s):  
Harun Sepet ◽  
Necmettin Tarakcioglu ◽  
RDK Misra

The main purpose of this work is to study how the morphology of nanofillers and dispersion and distribution level of inorganic nanofiller influence the impact behavior and fracture probability of inorganic filler filled industrial high-density polyethylene nanocomposites. For this study, nanoclay and nano-CaCO3 fillers–high-density polyethylene mixings (0, 1, 3, 5 wt.% high-density polyethylene) was prepared by melt-mixing method using a compounder system. The impact behavior was examined by charpy impact test, scanning electron microscopy, and probability theory and statistics. The level of the dispersion was characterized with scanning electron microscopy energy dispersive X-ray spectroscopy analysis. The results showed rather good dispersion of both of inorganic nanofiller, with a mixture of exfoliated and confined morphology. The results indicated that the impact strength of the industrial nanocomposite decreased with the increase of inorganic particulate content. The impact reliability of the industrial nanocomposites depends on the type of nanofillers and their dispersion and distribution in the matrix.


Author(s):  
Abdulmumin Adebisi ◽  
Tajudeen Mojisola ◽  
Umar Shehu ◽  
Muhammed Sani Adam ◽  
Yusuf Abdulaziz

In-situ synthesis of high-density polyethylene (HDPE) reinforced groundnut shell particulate (GSP) composite with treated GSP within the range of 10-30 wt% at 10 wt% has been achieved. The adopted technique used in the production of the composite is melt mixing and compounding using two roll mills with a compression moulding machine. Properties such as hardness, tensile strength, impact energy and water absorption analysis were examined. The result revealed that addition of GSP increases the hardness value from 22.3 to 87 Hv. However, the tensile strength progressively decreased as the GSP increases in the HDPE. This trend arises due to the interaction between neighbouring reinforced particulate which appears to influence the matrix flow, thereby inducing embrittlement of the polymer matrix. It was also observed that water absorption rate steadily increased with an increase in the exposure time and the absorbed amount of water increases by increasing the wt% of the GSP. Analysing the obtained results, it was concluded that there were improvements in the hardness, tensile strength, impact energy and water absorption properties of the HDPE-GSP polymer composite when compared to unreinforced HDPE. On these premises, GSP was found as a promising reinforcement which can positively influence the HDPE properties of modern composites.


2016 ◽  
Vol 51 (12) ◽  
pp. 1769-1782 ◽  
Author(s):  
Alok Kumar Pandey ◽  
Kavita Singh ◽  
Kamal K Kar

Composite prepared by mixing of different forms of carbon or other reinforcing fillers with polymer, is one of the possible ways to enhance the performance of polymeric materials. The present work focuses on the study of viscoelastic, thermal, electrical and mechanical properties of graphite flake-reinforced high-density polyethylene composites. The composites are processed by melt mixing using vertical twin-screw micro-compounder followed by final sample preparation via micro injection moulding. The reinforcing filler, graphite flake, is varied from 0 to 50 vol.% with respect to the polymer matrix. Dynamic mechanical thermal analysis reveals an increase in the storage modulus (E′) as well as loss modulus (E″) throughout the temperature range; however, damping (tan δ) shows a mixed behaviour. There is 550% and 479% increase of E′ and E″ in the rubbery region. Degree of entanglement, reinforcement efficiency and C factor are also calculated and correlated with the mechanical properties. On comparison, high-density polyethylene /graphite flake composite having 50 vol.% graphite flake with pure high-bcdensity polyethylene shows 52% increase in melt viscosity, whereas bulk density increases by 38%. This graphite flake is also responsible for the increase in the thermal stability (shift in the onset degradation temperature of ∼7℃ and the degradation temperature is more than 400℃), thermal conductivity (175% improvement) and electrical conductivity (∼6125% improvement, as the conductivity of pristine high-density polyethylene is ∼9.67 E-08 S/m). Mechanical properties determined by tensile and flexural tests show an initial increase and then a slight decrease in the tensile and flexural strength. Therefore, the graphite flake-reinforced high-density polyethylene composite with improved thermal conductivity, electrical conductivity, heat stability, viscoelastic behaviour and flexural modulus can be a promising as well as suitable composite material for making of various electronic and electrical accessories including bipolar plate for fuel cell applications.


2007 ◽  
Vol 1 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Hartono A. Saputra ◽  
John Simonsen ◽  
Kaichang Li

A number of grass straw–polyethylene composites were fabricated using Oregon rye grass (Lolium spp.) straw, high density polyethylene, and a number of compatibilizers: poly(diphenylmethane diisocyanate), maleic anhydride-modified polyethylene, stearic acid, and combinations of them. Grass straw–polyethylene composites with one of the previously mentioned compatibilizers had a higher modulus of rupture and modulus of elasticity than those without a compatibilizer. Combinations of poly(diphenylmethane diisocyanate) and one of the other compatibilizers resulted in a higher modulus of rupture and modulus of elasticity than poly(diphenylmethane diisocyanate) alone. The greatest improvement in modulus of rupture and modulus of elasticity as well as the lowest water uptake were observed in the composites containing a mixture of stearic acid and poly(diphenylmethane diisocyanate). Scanning electron microscopy showed the compatibilizers improved the interfacial adhesion of the resultant grass straw–polyethylene composites.


2020 ◽  
Vol 39 (23-24) ◽  
pp. 880-889
Author(s):  
Can Hu ◽  
Yueyun Zhou ◽  
Ting Zhang ◽  
Taijun Jiang ◽  
Guangsheng Zeng

Demand for natural fibers reinforced composites is growing as an alternative to synthetic fiber reinforced plastic composites. However, poor compatibility between natural fiber and matrix has limited its development. Therefore, it is necessary to improve their interfacial adhesion to improve the comprehensive properties of composites. In this work, sisal fibers were subjected to an alkali/polyvinyl alcohol coating treatment by an ultrasonic impregnation method, and the sisal/high-density polyethylene composite was prepared by a twin-screw extruder. The Fourier transform infrared spectroscopy was used to characterize the modification effect of sisal fiber. The surface morphology of sisal fiber and the interfacial morphology of sisal/high-density polyethylene composites were observed. The mechanical properties and water absorption of sisal/ high-density polyethylene composites were also studied. The results show that alkali/polyvinyl alcohol coating compound treatment can effectively improve the interfacial adhesion between sisal fiber and high-density polyethylene, improve the mechanical properties of composite, and reduce water absorption. Alkali/polyvinyl alcohol coating compound treatment is a very environment-friendly, cost-effective fiber modification method when compared with traditional modification methods. It is helpful for the development and application of natural fibers reinforced composites.


2019 ◽  
Vol 805 ◽  
pp. 88-93
Author(s):  
Achmad Chafidz ◽  
R.M. Faisal ◽  
Dewi Selvia Fardhyanti ◽  
Indar Kustiningsih ◽  
Jono Suhartono

In the current study, high density polyethylene filled polyvinyl alcohol fiber composites have been made via melt compounding process using a twin screw extruder. Four different fiber loadings (0, 5, 10, 20 wt%) together with HDPE matrix were mixed and melt blended with the extruder. The prepared composites were tested for their melt rheological properties, mechanical properties, FT-IR spectra, and water absorption behavior. Rheological test results exhibited that complex viscosity of the composites were higher than the neat HDPE and increased with the increase of PVA loadings. Moreover, the improvement of complex viscosity was more prominent at higher PVA loadings (i.e. PVAC-10 and PVAC-20) than at the lower one (PVAC-5). The flexural modulus and strength were higher for the all composites samples when compared to the neat HDPE, indicating that the incorporation of PVA fiber has successfully improved the mechanical (i.e. flexural) properties of the HDPE/PVA fiber composites. The FTIR analysis results prevailed the appearance of C=O spectrum at 2361 cm-1 that corresponding to carbonyl bond of PVA fiber on the whole composites. Additionally, from the water uptake test, the degree of water absorption of the composites increased with the fiber loadings.


Author(s):  
Atul Rajan ◽  
Pradeep Upadhyaya ◽  
Vijai Kumar ◽  
Navin Chand

This paper presents a part of research on the mechanical properties of compatibilized Poly (ethylene-co-vinyl acetate) (EVA)/ high density polyethylene (HDPE)/ organo modified montmorillonite (OMMT) nanocomposites prepared by melt mixing technique. Use of maleic anhydride grafted polyethylene (MA-g-PE) as Compatibilizer improves compatibility of EVA and HDPE. Blends containing EVA/HDPE blend with 2 phr MA-g-PE shows optimum properties. It observes that the addition of nanoclay improves the mechanical properties like tensile strength, flexural modulus, abrasion resistance and hardness of compatibilized nanocomposites systems. The morphology is studied by Scanning Electron Microscopy (SEM). The optimized properties occurrs at clay loading levels of 4 phr with MA-g-PE system.


2014 ◽  
Vol 970 ◽  
pp. 79-83
Author(s):  
Rapisa Jarapanyacheep ◽  
Kasama Jarukumjorn

Sawdust/recycled high density polyethylene (rHDPE) composites were prepared and their mechanical properties, flammability and morphology were investigated. Sawdust was used at contents of 30, 40 and 50 wt%. With increasing sawdust content, tensile strength and elongation at break of the composites decreased whereas tensile modulus increased. Flexural properties showed the same trend as tensile properties. Flammability of the composites enhanced with increasing sawdust content. Mechanical properties of alkali treated sawdust/rHDPE composites were higher than those of untreated sawdust/rHDPE composites at all sawdust contents. Moreover, alkali treatment improved flame retardancy of the composites. SEM micrographs showed that alkali treatment enhanced the interfacial adhesion between sawdust and rHDPE matrix.


Sign in / Sign up

Export Citation Format

Share Document