scholarly journals Effects of Varying Photoperiodic Regimens on Critical Biological Fitness Traits of Culex quinquefasciatus (Diptera: Culicidae) Mosquito Vector

2018 ◽  
Vol 10 ◽  
pp. 117954331876791 ◽  
Author(s):  
Azubuike Christian Ukubuiwe ◽  
Israel Kayode Olayemi ◽  
Innocent Chukwuemeka James Omalu ◽  
Francis Ofurum Arimoro ◽  
Bulus Musa Baba ◽  
...  

This study investigated the effects of varying photoperiodic conditions on critical life stages’ parameters of Culex quinquefasciatus. To this end, first larval stage was reared under different constant photoperiodic regimens: 0, 6 (short), 12 (equal), 13 (prevailing condition), and 18 and 24 (long) hours of light (hL). Duration of development, survivorship, emergence successes, adult longevity, caloric indices (CIs), and utilisation of teneral reserves for metamorphosis at each regimen were monitored. Analyses revealed significant negative effects of increasing photoperiod on all entomological variables measured. Short photo-phases elicited faster development times, increased life stages’ survivorship and number at emergence, adult longevity, and CI for all life stages while increasing teneral components for adult life traits. The information generated in this study is important in understanding the role played by photoperiod in disease transmission and for development of integrated vector control strategies based on environmental manipulation.

2015 ◽  
Vol 27 (1) ◽  
pp. 131-156
Author(s):  
RONGSONG LIU ◽  
GERGELY RÖST ◽  
STEPHEN A. GOURLEY

Intra-specific competition in insect and amphibian species is often experienced in completely different ways in their distinct life stages. Competition among larvae is important because it can impact on adult traits that affect disease transmission, yet mathematical models often ignore larval competition. We present two models of larval competition in the form of delay differential equations for the adult population derived from age-structured models that include larval competition. We present a simple prototype equation that models larval competition in a simplistic way. Recognising that individual larvae experience competition from other larvae at various stages of development, we then derive a more complex equation containing an integral with a kernel that quantifies the competitive effect of larvae of ageāon larvae of agea. In some parameter regimes, this model and the famous spruce budworm model have similar dynamics, with the possibility of multiple co-existing equilibria. Results on boundedness and persistence are also proved.


2019 ◽  
Vol 11 ◽  
pp. 117954331985602 ◽  
Author(s):  
Azubuike Christian Ukubuiwe ◽  
Chioma Cynthia Ojianwuna ◽  
Israel Kayode Olayemi ◽  
Francis Ofurum Arimoro ◽  
Innocent Chukwuemeka James Omalu ◽  
...  

Larval crowding is one of the abiotic factors affecting biological fitness in mosquitoes. This study aims at elucidating, quantitatively, the influence of more larval crowding on aspects of fitness in Culex quinquefasciatus mosquito. To this end, day-old larvae of the species were reared in 4 density regimens equivalent to 1 larva in 1.25, 2.5, 5, and 10 mL of distilled water. Developmental indices, adult fitness indices, and accumulation and utilisation of teneral reserves for metamorphosis were determined at these density regimens. The results revealed varying significant negative effects of larval density on all fitness indices measured for the species. The study also revealed high utilisation of teneral reserves for metamorphosis at high larval densities. The information generated will be useful in making informed-decisions in allocating scare resources for vector control, although field trials are advocated to establish these laboratory findings.


2016 ◽  
Vol 8 ◽  
pp. IJIS.S32516 ◽  
Author(s):  
Azubuike C. Ukubuiwe ◽  
Israel K. Olayemi ◽  
Aisha I. Jibrin

The need to have an improved knowledge on the bioecology of Culex quinquefasciatus, a prerequisite in the development of cost-effective control strategies, has informed the present preliminary investigation to put in better perspective variations that exist in the egg rafts of the species. Freshly laid egg rafts were collected and incubated at ambient temperature in well-labeled plastic trays. The results showed overall inconsistency in all indices monitored for the egg rafts. Generally, survivorship was high for the species. All immature stage and adult parameters measured varied significantly among the egg rafts and between/within sexes of the species. Therefore, this study suggests the presence of inherent variation in the bionomics of egg rafts of C. quinquefasciatus, probably influenced by the environment and hence underscores the need for additional studies to further elucidate the roles of genetics and environment in vectorial competence of the species, in order to develop robust sustainable mosquito vector control protocols.


Author(s):  
Jana L. Gevertz ◽  
James M. Greene ◽  
Cynthia Sanchez-Tapia ◽  
Eduardo D. Sontag

AbstractMotivated by the current COVID-19 epidemic, this work introduces an epidemiological model in which separate compartments are used for susceptible and asymptomatic “socially distant” populations. Distancing directives are represented by rates of flow into these compartments, as well as by a reduction in contacts that lessens disease transmission. The dynamical behavior of this system is analyzed, under various different rate control strategies, and the sensitivity of the basic reproduction number to various parameters is studied. One of the striking features of this model is the existence of a critical implementation delay (“CID”) in issuing separation mandates: while a delay of about two weeks does not have an appreciable effect on the peak number of infections, issuing mandates even slightly after this critical time results in a far greater incidence of infection. Thus, there is a nontrivial but tight “window of opportunity” for commencing social distancing in order to meet the capacity of healthcare resources. However, if one wants to also delay the timing of peak infections –so as to take advantage of potential new therapies and vaccines– action must be taken much faster than the CID. Different relaxation strategies are also simulated, with surprising results. Periodic relaxation policies suggest a schedule which may significantly inhibit peak infective load, but that this schedule is very sensitive to parameter values and the schedule’s frequency. Furthermore, we considered the impact of steadily reducing social distancing measures over time. We find that a too-sudden reopening of society may negate the progress achieved under initial distancing guidelines, but the negative effects can be mitigated if the relaxation strategy is carefully designed.


2021 ◽  
Author(s):  
Ukubuiwe Azubuike Christian ◽  
Olayemi Israel Kayode ◽  
Ukubuiwe Catherine Chinenye ◽  
Ugbede Bright Sule

Mosquito borne diseases have continued to ravage man and his animals despite efforts to curb its spread. The use of chemicals has been the main thrust for control of all life stages of mosquitoes. Increased resistance to commonly used insecticides has called for renewed effort for vector control. Environmental management for vector control is one of the new strategies developed to tackle the menace of vectors. Manipulation of abiotic factors has widely gained acceptance due to laboratory and semi-field trials and findings. In this chapter, we reviewed literatures on some critical abiotic factors and their effects on bionomics and biological fitness of immature and adult life stages of mosquito species. We also looked at prospects for developing protocols based on these findings.


Insects ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 52 ◽  
Author(s):  
Adeline Williams ◽  
Alexander Franz ◽  
William Reid ◽  
Ken Olson

The mosquito vector Aedes aegypti transmits arthropod-borne viruses (arboviruses) of medical importance, including Zika, dengue, and yellow fever viruses. Controlling mosquito populations remains the method of choice to prevent disease transmission. Novel mosquito control strategies based on genetically manipulating mosquitoes are being developed as additional tools to combat arbovirus transmission. Genetic control of mosquitoes includes two basic strategies: population suppression and population replacement. The former aims to eliminate mosquito populations while the latter aims to replace wild populations with engineered, pathogen-resistant mosquitoes. In this review, we outline suppression strategies being applied in the field, as well as current antiviral effector genes that have been characterized and expressed in transgenic Ae. aegypti for population replacement. We discuss cutting-edge gene drive technologies that can be used to enhance the inheritance of effector genes, while highlighting the challenges and opportunities associated with gene drives. Finally, we present currently available models that can estimate mosquito release numbers and time to transgene fixation for several gene drive systems. Based on the recent advances in genetic engineering, we anticipate that antiviral transgenic Ae. aegypti exhibiting gene drive will soon emerge; however, close monitoring in simulated field conditions will be required to demonstrate the efficacy and utility of such transgenic mosquitoes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Huo ◽  
Jing Chen ◽  
Shigui Ruan

Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6% (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693%,0.814%]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divine Ekwem ◽  
Thomas A. Morrison ◽  
Richard Reeve ◽  
Jessica Enright ◽  
Joram Buza ◽  
...  

AbstractIn Africa, livestock are important to local and national economies, but their productivity is constrained by infectious diseases. Comprehensive information on livestock movements and contacts is required to devise appropriate disease control strategies; yet, understanding contact risk in systems where herds mix extensively, and where different pathogens can be transmitted at different spatial and temporal scales, remains a major challenge. We deployed Global Positioning System collars on cattle in 52 herds in a traditional agropastoral system in western Serengeti, Tanzania, to understand fine-scale movements and between-herd contacts, and to identify locations of greatest interaction between herds. We examined contact across spatiotemporal scales relevant to different disease transmission scenarios. Daily cattle movements increased with herd size and rainfall. Generally, contact between herds was greatest away from households, during periods with low rainfall and in locations close to dipping points. We demonstrate how movements and contacts affect the risk of disease spread. For example, transmission risk is relatively sensitive to the survival time of different pathogens in the environment, and less sensitive to transmission distance, at least over the range of the spatiotemporal definitions of contacts that we explored. We identify times and locations of greatest disease transmission potential and that could be targeted through tailored control strategies.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Jorge Lopez-Jimenez ◽  
Nicanor Quijano ◽  
Alain Vande Wouwer

Climate change and the efficient use of freshwater for irrigation pose a challenge for sustainable agriculture. Traditionally, the prediction of agricultural production is carried out through crop-growth models and historical records of the climatic variables. However, one of the main flaws of these models is that they do not consider the variability of the soil throughout the cultivation area. In addition, with the availability of new information sources (i.e., aerial or satellite images) and low-cost meteorological stations, it is convenient that the models incorporate prediction capabilities to enhance the representation of production scenarios. In this work, an agent-based model (ABM) that considers the soil heterogeneity and water exchanges is proposed. Soil heterogeneity is associated to the combination of individual behaviours of uniform portions of land (agents), while water fluxes are related to the topography. Each agent is characterized by an individual dynamic model, which describes the local crop growth. Moreover, this model considers positive and negative effects of water level, i.e., drought and waterlogging, on the biomass production. The development of the global ABM is oriented to the future use of control strategies and optimal irrigation policies. The model is built bottom-up starting with the definition of agents, and the Python environment Mesa is chosen for the implementation. The validation is carried out using three topographic scenarios in Colombia. Results of potential production cases are discussed, and some practical recommendations on the implementation are presented.


Sign in / Sign up

Export Citation Format

Share Document