Expression of endogenous retroviruses in blood mononuclear cells and brain tissue from multiple sclerosis patients

1995 ◽  
Vol 1 (2) ◽  
pp. 82-87 ◽  
Author(s):  
HB Rasmussen ◽  
C Geny ◽  
L Deforges ◽  
H Perron ◽  
W Tourtelotte ◽  
...  

The aim of the present study was to examine whether there is an abnormal expression of certain endogenous retroviruses in MS patients. For this purpose samples of peripheral blood mononudear cells were obtained from 22 MS patients, a corresponding number of age and sex-matched healthy donors and five patients with other diseases affecting the central nervous system. In addition, brain specimens of macroscopic normal white and gray matter from four MS patients and a similar number of controls were included in the study. Using an enzymatic amplification technique, we found expression of the endogenous retroviral sequences, HRES-1, HERV-KI0 and ERV3 in most samples of peripheral blood mononudear cells from MS patients and controls without obvious differences between these two groups. In contrast, composite transcripts of ERV3 and a zinc finger sequence were more frequently detected in healthy donors than in MS patients. At present, the possible significance of this is uncertain. The retroviral element 4–1 was not transcribed or only transcribed at a very low level in peripheral blood cells of controls and MS patients. Transcripts of various endogenous retroviruses were also detected in the brain samples, but a different pattern was not apparent in the MS group as compared with controls. Aspects concerning a possible association between endogenous retroviruses and autoimmunity are considered.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nirupama D. Verma ◽  
Andrew D. Lam ◽  
Christopher Chiu ◽  
Giang T. Tran ◽  
Bruce M. Hall ◽  
...  

AbstractResting and activated subpopulations of CD4+CD25+CD127loT regulatory cells (Treg) and CD4+CD25+CD127+ effector T cells in MS patients and in healthy individuals were compared. Peripheral blood mononuclear cells isolated using Ficoll Hypaque were stained with monoclonal antibodies and analysed by flow cytometer. CD45RA and Foxp3 expression within CD4+ cells and in CD4+CD25+CD127loT cells identified Population I; CD45RA+Foxp3+, Population II; CD45RA−Foxp3hi and Population III; CD45RA−Foxp3+ cells. Effector CD4+CD127+ T cells were subdivided into Population IV; memory /effector CD45RA− CD25−Foxp3− and Population V; effector naïve CD45RA+CD25−Foxp3−CCR7+ and terminally differentiated RA+ (TEMRA) effector memory cells. Chemokine receptor staining identified CXCR3+Th1-like Treg, CCR6+Th17-like Treg and CCR7+ resting Treg. Resting Treg (Population I) were reduced in MS patients, both in untreated and treated MS compared to healthy donors. Activated/memory Treg (Population II) were significantly increased in MS patients compared to healthy donors. Activated effector CD4+ (Population IV) were increased and the naïve/ TEMRA CD4+ (Population V) were decreased in MS compared to HD. Expression of CCR7 was mainly in Population I, whereas expression of CCR6 and CXCR3 was greatest in Populations II and intermediate in Population III. In MS, CCR6+Treg were lower in Population III. This study found MS is associated with significant shifts in CD4+T cells subpopulations. MS patients had lower resting CD4+CD25+CD45RA+CCR7+ Treg than healthy donors while activated CD4+CD25hiCD45RA−Foxp3hiTreg were increased in MS patients even before treatment. Some MS patients had reduced CCR6+Th17-like Treg, which may contribute to the activity of MS.


Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1050-1057 ◽  
Author(s):  
D Meytes ◽  
JA Ma Ortega ◽  
NA Shore ◽  
PP Dukes

Abstract The regulation of erythroid burst-colony formation was studied in cultures of human peripheral blood mononuclear cells. Numbers of erythropoietin-stimulated colonies obtainable from the cells in response to various treatments were compared. One-day preincubation of the cells with phytohemagglutinin (PHA) doubled the yield of colonies. Irradiation of the cells with 3000 rad eliminated their ability to form erythroid bursts, but did not impair the ability of PHA-treated cells to enhance burst formation when added to a fresh batch of cells. This was due to a humoral factor, since media conditioned by PHA-treated washed cells were as effective as the cells themselves. When cells were separated into subpopulations by an adherence procedure and according to their ability to form rosettes with sheep red blood cells, it was found that the PHA-dependent burst-promoting activity released into the medium originated in a nonadherent, nonrosetting (T-cell depleted) cell population.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Carolina V. Messias ◽  
Julia P. Lemos ◽  
Daniela P. Cunha ◽  
Zilton Vasconcelos ◽  
Lidiane M. S. Raphael ◽  
...  

Abstract Background Zika virus (ZIKV) infection gained public health concern after the 2015 outbreak in Brazil, when microcephaly rates increased in babies born from infected mothers. It was demonstrated that ZIKV causes a congenital Zika virus syndrome, including various alterations in the development of the central nervous system. Although the infection of cells from the nervous system has been well documented, less is known in respect of ZIKV ability to infect immune cells. Herein, we investigated if peripheral blood mononuclear cells (PBMCs), freshly-isolated from healthy donors, could be infected by ZIKV. Methods PBMCs from healthy donors were isolated and cultured in medium with ZIKV strain Rio-U1 (MOI = 0.1). Infection was analyzed by RT-qPCR and flow cytometry. Results We detected the ZIKV RNA in PBMCs from all donors by RT-qPCR analysis. The detection of viral antigens by flow cytometry revealed that PBMC from more than 50% the donors were infected by ZIKV, with CD3+CD4+ T cells, CD3−CD19+ B cells and CD3+CD8+ T cells being, respectively, the most frequently infected subpopulations, followed by CD14+ monocytes. Additionally, we observed high variability in PBMC infection rates among different donors, either by numbers or type infected cells. Conclusions These findings raise the hypothesis that PBMCs can act as a reservoir of the virus, which may facilitate viral dissemination to different organs, including immune-privileged sites.


Sign in / Sign up

Export Citation Format

Share Document