Dynamic damage assessment of float glass under blast loading

2019 ◽  
Vol 22 (11) ◽  
pp. 2517-2529
Author(s):  
Xiao-Qing Zhou ◽  
Ming-Yu Wang ◽  
Li-Xiao Li

Architectural glass, especially the float glass, is a fragile part of a building. The architectural glass becomes a large amount of high-speed flying debris under bomb attacks and accidental explosions, thereby causing serious threat to residents. This study investigates the dynamic responses of a normal float glass subjected to blast loading using the explicit dynamic finite element software LS-DYNA. A JH-2 material model, which considers the strain rate effect and damage accumulation, is adopted for the float glass. A preliminary study shows that the present numerical model combined with reasonable material parameters can simulate the failure mode of the glass and the ejection velocity of glass fragments after failure. The verified model is then used to investigate the dynamic damage responses of the float glass under different loading cases. The damage assessment criterion of float glass is established on the basis of the glazing protection levels defined by the General Services Administration of the United States. Comprehensive simulations are conducted on different amounts of explosive and standoff distances. The degrees of glass damage under different loading cases are determined by combining the projection velocity of glass fragments after failure with a kinematic equation. Finally, the damage assessment diagram of float glass under different amounts of explosive is presented and compared with those in FEMA 426.

2010 ◽  
Vol 163-167 ◽  
pp. 1359-1363
Author(s):  
Xiu Hua Zhang ◽  
Yan Yan Wu ◽  
Jun Wang

The reinforced concrete (RC) beams have three failure modes using large-scale finite element procedure LS-DYNA to simulate dynamic responses and failure modes of RC beams under blast loading. Holmquist-Johnson-Cook material model was used in concrete, the damage and strain rate effects were considered the kinematic hardening plasticity material model was used in reinforcing bars. With different rebar ratios and charges of weight TNT equivalent and stand-off distance were investigated and discussed. The numerical simulation can predict responses and flexure, flexure-shear and direct shear of the RC beams under different blast loading. The influence of the several factors have been identified and provided a theoretical basis for blast resistant design and retrofitting of the RC beam.


2018 ◽  
Vol 933 ◽  
pp. 188-195 ◽  
Author(s):  
Yu Chen Guo ◽  
Gui Ping Zhao

The dynamic responses of sandwich structures with MHS(metal hollow sphere)and closed cell aluminum foams under blast loading were simulated numerically by employing the finite element software ANSYS/LS-DYNA. Both sandwich panels and sandwich spheres were modeled. Some factors that determine the blast resistance of the sandwich structures were investigated. According to the parametric studies, the sandwich structures with thin inner face sheet and thick outer face sheet have stronger blast resistance than others. Also the results show that sandwich structures with interlaced hollow spheres have a better performance than those with paratactic hollow spheres. Moreover, it's inferred that the density graded core with the biggest density as the first impact layer and the least density as the last layer has more benefits in energy absorption. The comparison between sandwich structures with metal hollow spheres and those with aluminum foams was studied experimentally and numerically and the results demonstrate that structures with aluminum foam have advantage in energy absorption but structures with MHS are stronger and can undertake more TNT.


2015 ◽  
Vol 744-746 ◽  
pp. 315-318
Author(s):  
Hao Du ◽  
Chun Hua Liu

The terrorism and regional conflicts posed a threat to the world peace. Some terrorist explosions caused collapse of the buildings, which brought heavy tragedies to the human components. Therefore research on damage of structural components and resistance to damage have become the focus of our attention. Finite element software LS-DYNA was applied to simulating the response of reinforced concrete columns under blast loading. And analysis on dynamic response under different loading period was carried out. By studying on the stress and strain of reinforced concrete columns subjected to blast loading, the possible failure modes were obtained. In addition, the bearing capacities of concrete columns that are reinforced with carbon fiber and steel panel were analyzed, and the reinforcement effects were compared to provide reasonable reinforcement schemes for structures blast-resistant design.


2020 ◽  
Vol 10 (5) ◽  
pp. 1815
Author(s):  
Mustafasanie M. Yussof ◽  
Jordan Halomoan Silalahi ◽  
Mohd Khairul Kamarudin ◽  
Pei-Shan Chen ◽  
Gerard A. R. Parke

This research is aimed at investigating the dynamic behaviour of, and to analyse the dynamic response and dynamic performance of steel frames strengthened with welded haunches subjected to a typical hydrocarbon blast loading. The structural dynamic analysis was carried out incorporating the selected blast load, the validated 3D model of the structures with different welded haunch configurations, steel dynamic material properties, and non-linear dynamic analysis of multiple degree of freedom (MDOF) structural systems. The dynamic responses and effectiveness of the reinforced connections were examined using ABAQUS finite element software. Results showed that the presence of the welded haunch reinforcement decreased the maximum frame ductility ratio. Based on the evaluation of the results, the haunch reinforcements strengthened the selected steel frame and improved the dynamic performance compared to the frame with unreinforced connections under blast loading, and the biggest haunch configuration is the “best” type.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


Author(s):  
H Anıl Salman ◽  
R Orhan Yıldırım

In this work, the resistance and deformation characteristics of a brittle material against rain erosion are examined by using the non-linear, explicit software LS-DYNA. The water jet with varying speeds impinges at 90° on silica float glass plates with different thicknesses. In the simulations, the Arbitrary Lagrangian Eulerian method is used for modelling of the water. In order to analyse the deformations on the brittle material Johnson–Holmquist–Ceramics (JH-2) is used as the material model. Minimum plate thickness (for constant water jet speed) and maximum water speed (for constant plate thickness), which do not cause any damage to the target, are determined depending on the geometry, boundary conditions and assumed failure strain value for erosion. The results are compared with the water-hammer pressure.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1548
Author(s):  
Jiuling Hu ◽  
Lianjin Hong ◽  
Lili Yin ◽  
Yu Lan ◽  
Hao Sun ◽  
...  

At present, high-speed underwater acoustic communication requires underwater transducers with the characteristics of low frequency and broadband. The low-frequency transducers also are expected to be low-frequency directional for realization of point-to-point communication. In order to achieve the above targets, this paper proposes a new type of flextensional transducer which is constructed of double mosaic piezoelectric ceramic rings and spherical cap metal shells. The transducer realizes broadband transmission by means of the coupling between radial vibration of the piezoelectric rings and high-order flexural vibration of the spherical cap metal shells. The low-frequency directional transmission of the transducer is realized by using excitation signals with different amplitude and phase on two mosaic piezoelectric rings. The relationship between transmitting voltage response (TVR), resonance frequency and structural parameters of the transducer is analyzed by finite element software COMSOL. The broadband performance of the transducer is also optimized. On this basis, the low-frequency directivity of the transducer is further analyzed and the ratio of the excitation signals of the two piezoelectric rings is obtained. Finally, a prototype of the broadband ring flextensional underwater transducer is fabricated according to the results of simulation. The electroacoustic performance of the transducer is tested in an anechoic water tank. Experimental results show that the maximum TVR of the transducer is 147.2 dB and the operation bandwidth is 1.5–4 kHz, which means that the transducer has good low-frequency, broadband transmission capability. Meanwhile, cardioid directivity is obtained at 1.4 kHz and low-frequency directivity is realized.


2021 ◽  
Vol 13 (11) ◽  
pp. 6456
Author(s):  
Ziqi Liu ◽  
Ming Zhang ◽  
Liwen Liu

There have been growing concerns around the world over the rising spatial inequality (SI) amid fast and vast globalization. This paper presents an effort to benchmark the conditions and trends of spatial inequality in 37 megaregions in the United States, Europe, and China. Furthermore, the study selected three megaregion examples and analyzed the effect of developing high-speed rail (HSR) as an infrastructure investment strategy on reshaping the spatial pattern of job accessibility. The study measures spatial inequality with the Theil index of gross regional product and with the rank-size coefficient of polycentricity. Results show that spatial inequality exists and varies in magnitude within and between megaregions. On average, Chinese megaregions exhibited the level of spatial inequality about two times or more of those in the U.S. and European megaregions. The decade between 2006 and 2016 saw a decrease in the Theil index measure of megaregional inequality in China, but a slight increase in the United States and Europe. Fast growing megaregions exhibit high levels and rising trends of spatial inequality regardless of the country or continent setting. HSR helps improve mobility and accessibility; yet the extent to which HSR reduces spatial inequality is context dependent. This study presents a first attempt to assess and compare the spatial inequality conditions and trajectories in world megaregions aiming at promoting international learning.


2019 ◽  
Vol 258 ◽  
pp. 05005 ◽  
Author(s):  
Wivia Octarena Nugroho ◽  
Dina Rubiana Widarda ◽  
Oryza Herdha Dwyana

As the need of the train speed increased, the existing bridges need to be evaluated, especially in dynamic responses, which are deformation and acceleration. In this study, Cisomang Bridge is modeled and analyzed due to the high-speed train SJ X2 in varying speeds, 50 km/h, 100 km/h, 150 km/h, and 200 km/h. The used of tuned mass damper also will be varied on its setting and placing. The tuned mass dampers setting be varied based on the first or second natural frequency and the placing of tuned mass damper be varied based on maximum deformation of the first or second mode. Moreover, the tuned mass damper ratio will be varied 1% and 1.6%. For all speed variations, dynamic responses of structure without TMD still fulfil the Indonesian Government Criterion based on PM 60 - 2012 but do not meet requirement of comfort criteria based on DIN-Fachbericht 101. Furthermore, only for the speed train 50km/h dynamic responses of structure fulfil safety criteria based on Eurocode EN 1990:2002, whereas the other speed variations do not meet that requirement. In the use of TMD 1% mass ratio, the structure fulfils the safety criteria for all speed variations. In the use of TMD 1.6% mass ratio, all the structure fulfils the safety and comfort criteria except 100 km/h speed which only fulfils the safety criteria.


2011 ◽  
Vol 199-200 ◽  
pp. 1492-1495 ◽  
Author(s):  
Guo Shun Wang ◽  
Rong Fu ◽  
Liang Zhao

The simulation calculation on the temperature field of the disc brake system on high-speed trains under the working condition of constant speed at 50Km/h is made. A steady-state calculation model is established according to the actual geometric size of a brake disc and a brake pad, and the analog calculation and simulation on the temperature field of the brake disc and the brake pad by using the large-scale nonlinear finite element software ABAQUS are carried out. The distribution rules of the temperature field of the brake disc and the brake pad under the working condition of constant speed are made known. The surface temperature of the brake disc at friction radius is the highest, with a band distribution for temperature. There exists a temperature flex point in the direction of thickness, of which the thickness occupies 15% of that of the brake disc; due to the small volume of the brake pad, the temperature gradient of the whole brake pad is not sharp, and larger temperature gradient occurs only on the contact surface.


Sign in / Sign up

Export Citation Format

Share Document