Experimental and numerical investigation on failure behavior of ring joints in precast concrete shear walls

2019 ◽  
Vol 23 (1) ◽  
pp. 118-131
Author(s):  
Jian Zhou ◽  
Xudong Zhi ◽  
Feng Fan ◽  
Anliang Jiao ◽  
Hongliang Qian

Precast shear wall structures have been widely used due to their outstanding features, and the joints between precast members play a critical role in complete structures, specifically for vertical joints. The ring joint is a new connection method used for the vertical connection. Few studies and related regulations were traced; therefore more detailed studies are required. In order to study the anchoring performance and failure behavior, an experimental model was designed and tested under monotonic axial loading, taking the composite height of ring rebars, concrete specifications, diameter of the horizontal rebars, relative position of the ring rebars, diameter of the ring rebars, and number of horizontal rebars into consideration. The failure phenomena were observed and the data were collected. The failure pattern, bearing capacity, yield ratio, displacement ductility coefficient, and other performance parameters were analyzed. The study indicated that the failure patterns are divided into ring rebar pull-out and ring rebar fracture. Increasing the composite height of the ring rebar, the concrete specifications and the number of horizontal rebars could improve the bearing performance, and the contribution of the horizontal rebar diameter was limited, and interlocking ring rebars arranged uniformly are not optimal. In the case of joint failure, the yield ratio is relatively small and the displacement ductility coefficient is larger, which shows the bearing capacity reserve is better. A numerical model was established to analyze the internal behavior, and the results were in good agreement with the experimental results, important for us to understand the failure behavior. Design recommendations will promote its application.

2014 ◽  
Vol 919-921 ◽  
pp. 1812-1816 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo

To study the seismic behavior of Double-Wall Precast Concrete (DWPC) shear wall, three full scale specimens are tested and compared under low-cyclic reversed loading, including two DWPC shear walls and one normal Cast-In-Situ (CIS) shear wall. By observing their experimental phenomena and failure modes, contrasting their displacement ductility coefficients, hysteretic curves, skeleton curves and energy dissipation capacity, the seismic behavior were synthetically evaluated on aspects of strength, stiffness, ductility and energy dissipation. Compared with CIS specimen, DWPC specimens have higher initial stiffness, increased cracking loads by 43% to 47%, and the ultimate loads increased by 22% to 23%. The displacement ductility ratios also meet the ductility requirements with value of 5. The hysteretic curves of three specimens are plump, and the trend of skeleton curves is basically the same. The DWPC specimens demonstrated a good energy dissipation capacity. All the specimens had shown favorable seismic performance.


2012 ◽  
Vol 517 ◽  
pp. 577-582 ◽  
Author(s):  
Li Hua Chen ◽  
An Zhou ◽  
Bing Kang Liu

The low-cyclic loading tests are carried out for three pieces of recycled concrete high shear walls, with 100% replacement ratio of recycled coarse aggregate under different axial-load ratios. The mechanical performances of shear walls, including failure patterns, the bearing capacity, the hysteretic properties and ductility, are analyzed. The test results indicate that the basic behavior of recycled concrete shear walls resembles quite closely that of the ordinary concrete shear walls, the recycled concrete shear wall under bending failure has good ductility and bearing capacity; the hysteresis loop is stable and the degradation of stiffness is not great; the shear-slip phenomenon becomes significant and the ductility decreases under high axial-load ratio. The calculation of flexural strength of recycled concrete shear walls can be adopted directly from computational theories and formula used for ordinary concrete shear walls. It is feasible to apply reasonably designed recycled concrete shear walls to small high-rise buildings.


2014 ◽  
Vol 584-586 ◽  
pp. 1299-1303 ◽  
Author(s):  
Qin Yan Zhao ◽  
Zhong Yong Zhang ◽  
Guang Ming Qiu ◽  
Ji Liang Liu ◽  
Ming Jin Chu

Precast two-way hollow slab concrete shear wall is a new structure adapted to housing industrialization. To study the effect of the vertical joint on mechanical behaviors of shear walls, one reinforced concrete shear wall and two precast concrete shear walls built with hollow slabs were quasi-statically tested under low cyclic loading. The study of failure mode and failure process of specimens shows that vertical macro-cracks occurred in precast walls under loading, which made failure behavior of walls evolve from integral wall into split wall. It also shows that relative deformation formed along the vertical joint before peak load, so the ductility of walls is increased. New type shear walls exhibit good ductility and brittle shear failure can be avoided effectively.


2010 ◽  
Vol 163-167 ◽  
pp. 2023-2026
Author(s):  
Kai Wu ◽  
Jian Yang Xue ◽  
Hong Tie Zhao

Experimental study has been carried out on the seismic performance of SRC-RC transfer columns. The effect of extension length of shape steel has been analyzed. Degeneration of bearing capacity becomes much more obvious when extension length of shape steel increases and failure patterns change from shear failure to bond failure. Displacement ductility changes with increase of the extension length of shape steel, enhancing at first and then reducing, reaching peak value when extension length of shape steel gets close to three-fifths of column height. But extension length of shape steel has little effect on the bearing capacity of transfer column. Although double stirrups are arranged at the location of shape steel discontinuous, strain of stirrup at this position is still much higher than anywhere else.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qiu-nan Chen ◽  
Meng Yang ◽  
Xiao-cheng Huang

Inflatable anchors have been applied to reinforce foundations because soft soil deposits have a low bearing capacity. However, previous research on the mechanical behaviors of inflatable anchors has focused on a single anchor. Since anchors are always used in a group, the uplift behavior of multiple inflatable anchors in soft soil should be investigated. A series of pull-out tests were conducted in this framework by changing the number, spacing, and layout of inflatable anchors. Additionally, the effect coefficient (ECO) of multiple inflatable anchors is discussed. It is found that the failure behavior of multiple inflatable anchors exhibits a three-stage curve: an initial linear stage, followed by nonlinear, and steady-state stages. In addition, the ultimate bearing capacity of multiple inflatable anchors is maximized if the ratio of the spacing of inflatable anchors to the equivalent expanding section diameter of an inflatable anchor is 6.84. It is recognized that the ECO of this new multiple inflatable anchor group is sometimes greater than 1, unlike that of conventional anchors, which have ECOs of less than 1. In addition, the layout of multiple inflatable anchors in the shape of a cinquefoil is recommended due to its high ECO.


2019 ◽  
Vol 9 (21) ◽  
pp. 4723 ◽  
Author(s):  
Sun ◽  
Guo ◽  
Liu

Experiments were performed on four specimens of steel frames with infilled recycled aggregate concrete shear walls (SFIRACSWs), one specimen of infilled ordinary concrete wall, and one pure-steel frame were conducted under horizontal low cyclic loading. The influence of the composite forms of steel frames and RACSWs (namely, infilled cast-in-place and infilled prefabricated) on the failure modes, transfer mechanisms of lateral force, bearing capacity, and ductility of SFIRACSWs is discussed, and the concrete type and connecting stiffness of beam–column joints (BCJs) are also considered. Test results showed that infilled RACSWs can increase the bearing capacity and lateral stiffness of SFIRACSWs. The connecting stiffness of BCJs slightly influences the seismic behavior of SFIRACSWs. In the infilled cast-in-place RACSWs, the wall cracks mainly extended along the diagonal direction. The bearing capacity was 2.4 times higher than in the pure steel frame, the initial stiffness was 4.3 times higher, and the displacement ductility factors were 2.44–2.69 times higher. In the infilled prefabricated RACSWs, the wall cracks mainly extended along the connection between the embedded T-shape connectors and walls before finally connecting along the horizontal direction. Moreover, shear failure occurred in the specimens. The bearing capacity was 1.44 times higher than that of the pure steel frame, the initial stiffness was 2.8 times higher, and the displacement ductility factors were 3.32–3.40 times higher. The degradation coefficients of the bearing capacity were more than 0.85, indicating that the specimens demonstrated a high safety reserve.


2021 ◽  
Vol 11 (10) ◽  
pp. 4421
Author(s):  
Zhiming Zhang ◽  
Fenglai Wang

In this study, four single-story reinforced masonry shear walls (RMSWs) (two prefabricated and two cast-in-place) under reversed cyclic loading were tested to evaluate their seismic performance. The aim of the study was to evaluate the shear behavior of RMSWs with flanges at the wall ends as well as the effect of construction method. The test results showed that all specimens had a similar failure mode with diagonal cracking. However, the crack distribution was strongly influenced by the construction method. The lateral capacity of the prefabricated walls was 12% and 27% higher than that of the corresponding cast-in-place walls with respect to the rectangular and T-shaped cross sections. The prefabricated walls showed better post-cracking performance than did the cast-in-place wall. The secant stiffness of all the walls decreased rapidly to approximately 63% of the initial stiffness when the first major diagonal crack was observed. The idealized equivalent elastic-plastic system showed that the prefabricated walls had a greater displacement ductility of 3.2–4.8 than that of the cast-in-place walls with a displacement ductility value of 2.3–2.7. This proved that the vertical joints in prefabricated RMSWs enhanced the seismic performance of walls in shear capacity and ductility. In addition, the equivalent viscous damping of the specimens ranged from 0.13 to 0.26 for prefabricated and cast-in-place walls, respectively.


2012 ◽  
Vol 204-208 ◽  
pp. 1066-1069
Author(s):  
Yan Jun Li ◽  
Ping Liu

Four specially shaped columns with HRB500 reinforcement were tested under low cyclic loading. The hysteretic curve, yield load, ultimate load, displacement ductility and rigidity degradation were compared in order to research the effect of axial compression ratio on ductility and bearing capacity of specially shaped column with HRB500 reinforcement. It is shown that the axial compression ratio has greater influence on ductility and bearing capacity. With the increase of axial compression ratio, the bearing capacity of HRB500 reinforcement concrete specially shaped column can be enhanced while the deformation capacity becomes worse. The hysteretic characteristic of specially shaped columns with HRB500 reinforcement is improved and the stiffness degeneration becomes slow with the decrease of axial compression ratio.


2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Ulf Arne Girhammar ◽  
Bo Källsner

The authors present an experimental and analytical study of slotted-in connections for joining walls in the Masonite flexible building (MFB) system. These connections are used for splicing wall elements and for tying down uplifting forces and resisting horizontal shear forces in stabilizing walls. The connection plates are inserted in a perimeter slot in the PlyBoard™ panel (a composite laminated wood panel) and fixed mechanically with screw fasteners. The load-bearing capacity of the slotted-in connection is determined experimentally and derived analytically for different failure modes. The test results show ductile postpeak load-slip characteristics, indicating that a plastic design method can be applied to calculate the horizontal load-bearing capacity of this type of shear walls.


Sign in / Sign up

Export Citation Format

Share Document