Two-dimensional simulations of vortex-induced vibration of a circular cylinder

Author(s):  
Asim Ozan Mutlu ◽  
Meral Bayraktar ◽  
Seyfettin Bayraktar

In the present study, one of the cross-disciplinary problems known as vortex-induced vibration is numerically investigated. Effects of four different low mass-damping ratios; ζ = 0.013, 0.028, 0.074, and 0.124 of a smooth cylinder are taken into account for transition of shear layer 2 (TrSL2) type flow that falls between the Reynolds numbers from 2500 to 10,830 utilizing a two-dimensional cylinder that is free to move in normal-direction. Unsteady Reynolds-Averaged Navier–Stokes solutions indicate that the general trend is well captured with the adopted shear stress transport k-ω turbulence model, however, due to two-dimensional limitations some results are not consistent with experimental data. An inverse relation between the mass-damping ratio and the transition from the upper to the lower branch is detected. Change of drag and lift coefficients with the reduced velocities revealed that the maximum drag coefficient increases with reduced velocity until it reaches Ur = 5 and then decreases dramatically while the lift coefficients decrease consistently from the beginning.

Author(s):  
M. Eaddy ◽  
W. H. Melbourne ◽  
J. Sheridan

The problem of flow-induced vibration has been studied extensively. However, much of this research has focused on the smooth cylinder to gain an understanding of the mechanisms that cause vortex-induced vibration. In this paper results of an investigation of the effect of surface roughness on the cross-wind forces are presented. Measurements of the sectional RMS fluctuating lift forces and the axial correlation of the pressures for Reynolds numbers from 1 × 105 to 1.4 × 106 are given. It was found that surface roughness significantly increased the axial correlation of the pressures to similar values found at high subcritical Reynolds numbers. There was little effect of the surface roughness on the sectional lift forces. The improved correlation of the vortex shedding means rough cylinders will be subject to larger cross-wind forces and an increased possibility of vortex-induced vibration compared to smooth cylinders.


2013 ◽  
Vol 715 ◽  
pp. 359-388 ◽  
Author(s):  
Basile Gallet ◽  
William R. Young

AbstractWe investigate solutions of the two-dimensional Navier–Stokes equation in a $\lrm{\pi} \ensuremath{\times} \lrm{\pi} $ square box with stress-free boundary conditions. The flow is steadily forced by the addition of a source $\sin nx\sin ny$ to the vorticity equation; attention is restricted to even $n$ so that the forcing has zero integral. Numerical solutions with $n= 2$ and $6$ show that at high Reynolds numbers the solution is a domain-scale vortex condensate with a strong projection on the gravest mode, $\sin x\sin y$. The sign of the vortex condensate is selected by a symmetry-breaking instability. We show that the amplitude of the vortex condensate has a finite limit as $\nu \ensuremath{\rightarrow} 0$. Using a quasilinear approximation we make an analytic prediction of the amplitude of the condensate and show that the amplitude is determined by viscous selection of a particular solution from a family of solutions to the forced two-dimensional Euler equation. This theory indicates that the condensate amplitude will depend sensitively on the form of the dissipation, even in the undamped limit. This prediction is verified by considering the addition of a drag term to the Navier–Stokes equation and comparing the quasilinear theory with numerical solution.


2017 ◽  
Vol 813 ◽  
pp. 482-507 ◽  
Author(s):  
Sungmin Ryu ◽  
Gianluca Iaccarino

A numerical investigation of vortex-induced rotations (VIRs) of a rigid square cylinder, which is free to rotate in the azimuthal direction in a two-dimensional uniform cross-flow, is presented. Two-dimensional simulations are performed in a range of Reynolds numbers between 45 and 150 with a fixed mass and moment of inertia of the cylinder. The parametric investigation reveals six different dynamic responses of the square cylinder (expanding on those reported by Zaki et al. (J. Fluids Struct., vol. 8, 1994, pp. 555–582)) and their coupled vortex patterns at low Reynolds numbers. In each characteristic regime, moment generating mechanisms are elucidated with investigations of instantaneous flow fields and surface pressure distributions at chosen time instants in a period of rotation response. Our simulation results also elucidate that VIRs significantly influence the statistics of drag and lift force coefficients: (i) the onset of a rapid increases of the two coefficients at $Re=80$ and (ii) their step increases in the autorotation regime.


Author(s):  
R. J. Boyle ◽  
R. G. Senyitko

The aerodynamic performance of a turbine vane was measured in a linear cascade. These measurements were conducted for exit-true chord Reynolds numbers between 150,000 and 1,800,000. The vane surface rms roughness-to-true chord ratio was approximately 2 × 10−4. Measurements were made for exit Mach numbers between 0.3 and 0.9 to achieve different loading distributions. Measurements were made at three different inlet turbulence levels. High and intermediate turbulence levels were generated using two different blown grids. The turbulence was low when no grid was present. The wide range of Reynolds numbers was chosen so that, at the lower Reynolds numbers the rough surfaces would be hydraulically smooth. The primary purpose of the tests was to provide data to verify CFD predictions of surface roughness effects on aerodynamic performance. Data comparisons are made using a two-dimensional Navier-Stokes analysis. Both two-equation and algebraic roughness turbulence models were used. A model is proposed to account for the increase in loss due to roughness as the Reynolds number increases.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


Author(s):  
Jianhui Liu ◽  
Michael M. Bernitsas

Flow Induced Motions (FIM) of a single-cylinder VIVACE Converter is investigated using two-dimensional Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the Spalart-Allmaras turbulence model at Reynolds numbers (30,000 ≤Re≤120,000, 5.50≤U*≤9.85) in the TrSL3 flow regime. Computational results compare very well with experimental data. With implementation of Passive Turbulence Control (PTC), the VIVACE Converter can harness hydrokinetic energy from currents or tides over an expanded range of FIM synchronization, including Vortex Induced Vibrations (VIV) and galloping. The General Grid Interface (GGI) with topological mesh changes is proved to be an effective method for handling high-amplitude FIM response. Within the test Reynolds number range, five regions are clearly observed, including the no-FIM range, the VIV initial branch, the VIV upper branch, transition from VIV to galloping, and galloping. The power envelope calculated based on the CDF simulations for FIM agrees very well with the corresponding power envelope generated based on experiments. The range between VIV and galloping can be eliminated by adjusting the spring-stiffness and the harnessing damping-ratio. This is verified by both experiments and numerical simulation.


2016 ◽  
Vol 12 (2) ◽  
pp. 122-127
Author(s):  
Juraj Mužík

Abstract A Lattice Boltzmann method is used to analyse incompressible fluid flow in a two-dimensional cavity and flow in the channel past cylindrical obstacle. The method solves the Boltzmann’s transport equation using simple computational grid - lattice. With the proper choice of the collision operator, the Boltzmann’s equation can be converted into incompressible Navier-Stokes equation. Lid-driven cavity benchmark case for various Reynolds numbers and flow past cylinder is presented in the article. The method produces stable solutions with results comparable to those in literature and is very easy to implement.


Sign in / Sign up

Export Citation Format

Share Document