Formation and characterization of superhydrophobic and alcohol-repellent nonwovens via electrohydrodynamic atomization (electrospraying)

2016 ◽  
Vol 47 (1) ◽  
pp. 125-146 ◽  
Author(s):  
Mehmet Dasdemir ◽  
Hatice Ibili

This study focuses on the development of superhydrophobic and alcohol-repellent medical nonwoven fabrics via electrohydrodynamic atomization (electrospraying). It also compares the effectiveness of electrospraying with conventional pad-dry-cure finishing application. A commercial fluorochemical finishing agent was used to prepare fluorochemical solutions at varying concentrations (0.9–9 wt%). Electrospraying characteristics of these solutions were determined with characterizing their solution properties such as viscosity, conductivity and surface tension. After the successful applications of fluorochemical solutions on nonwoven fabrics via padding and electrospraying, wet pick-up ratios and weight gains of these fabrics were calculated. Also, water and alcohol repellencies of the coated fabrics were characterized with water contact angle and alcohol contact angle measurements. According to our findings, electrospraying application yielded less chemical consumption and higher water contact angle and alcohol contact angle results than padding. Increasing solution concentration and application time for electrospraying enhanced water contact angle values, which reached a maximum level (up to 156°) and afterwards remained almost constant depending on these variables. Thus, their limits to achieve superhydrophobic surfaces were able to be determined. Electrosprayed nonwovens were also shown to be alcohol-repellent against alcohol/water mixture of 70/30 (v/v%) whereas that was 30/70 (v/v%) for padded nonwovens. The investigation of the electrosprayed surfaces revealed a very less coating on the uppermost side of surface fibres which mostly led to the enhanced water and alcohol repellencies. One of the other important outcomes of this study is that there was no significant change on the comfort properties of nonwoven fabrics after the electrospraying application.

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1257
Author(s):  
Eshraga A. A. Siddig ◽  
Yu Zhang ◽  
Baojing Yang ◽  
Tianshu Wang ◽  
Jianjun Shi ◽  
...  

A durable flame-resistant and ultra-hydrophobic phosphorus–fluoride coating on aramid fabrics was achieved by plasma-induced graft polymerization. The aramid fabrics were activated and roughed through the low-pressure plasma firstly, which involves the sequential coating of a mixture of phosphorus–fluoride emulsion copolymer. When potentially exposed to flame or water, such a surface produces a dual effect in which it is intumescent and waterproof, successfully giving the coated fabrics flame-resistant ultra-hydrophobic bifunctional properties. Thus, adhesive coatings provide a convenient way to resolve the issue of washing durability of the coatings. The as-prepared fabrics last for 10 repeatable washing cycles without losing their flame resistance and superhydrophobicity, suggesting future applications as advanced multifunctional textiles. Compared to an untreated coating, its char length was less than 1 cm with no measurable after-flame or after-glow times, and its static water contact angle remained stable above 170°. Meanwhile, the control sample was unable to extinguish the fire with a damage length of 10.6 cm and a water contact angle of 100°. All the results indicate that plasma-reactive polar groups interact between phosphorus and fluorine elements, leading to an increased relative atom ratio P and F through Energy-Dispersive Spectrometer (EDS) spectra and XPS analysis, which inhibits the flammability and wettability.


Author(s):  
Choi Yee Foong ◽  
Naznin Sultana

Recently, in the field of tissue engineering, fabrication of three-dimensional (3D) electrospun scaffold or membrane is much emphasized. In this study, layered composite scaffolds or membranes were fabricated using two biodegradable polymers, polycaprolactone (PCL) and Chitosan layer-by-layer with multilayer electrospinning method. Characterizations of membranes were done using several techniques. Electrospun composite membrane’s surface morphology was examined using a Scanning Electron Microscopy (SEM) and the wettability of the material’s surface was determined using water contact angle measuring measurement (WCA). Water uptake properties of electrospun membrane were also determined. Using optimized solution concentration and electrospinning processing parameters, the composite PCL/Chitosan and PCL layer-by-layer were successfully fabricated. It was observed from SEM that the composite electrospun membranes produced consisted microfibers and nanofibers within single scaffold. The water contact angle for the double-layered composite electrospun membranes was lower than the pure PCL. The double-layered composite membrane also had higher water uptake properties compared to pure PCL scaffold.


2018 ◽  
Vol 83 (7-8) ◽  
pp. 885-897
Author(s):  
Ugur Hulusi ◽  
Burcu Oktay ◽  
Atilla Gungor ◽  
Nilhan Kayaman-Apohan

In this paper, the preparation of hydrophobic and crosslinked poly- (vinyl alcohol)/silica organic?inorganic hybrid nanofibers via the sol?gel electrospinning method is reported. Silica was produced through the acetic acid catalyzed reaction of a silica precursor consisting of dimethyldimethoxysilane (DMDMOS), methyltrimethoxysilane (MTMS), tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane (FAS1313; Dynasylan? F 8261) and phenyltrimethoxysilane (PTMS; Dynasylan? 9165) in a 2-propanol?water mixture. Hybrid nanofibers were obtained by electrospinning the silica precursor and an aqueous PVA solution. Chemical, structural, thermal and surface analyses were conducted by Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and water contact angle (WCA) methods, respectively. The obtained hybrid nanofibers were insoluble in aqueous solution. SEM images displayed that highly crosslinked and porous structures were obtained and the average fiber diameters of poly(vinyl alcohol) (PVA)/silica nanocomposites were around 70 nm. A nanofiber surface with a water contact angle of 130? was achieved.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4312
Author(s):  
Pedro J. Rivero ◽  
Juan P. Fuertes ◽  
Adrián Vicente ◽  
Álvaro Mata ◽  
José F. Palacio ◽  
...  

In this work, a one-step electrospinning technique has been implemented for the design and development of functional surfaces with a desired morphology in terms of wettability and corrosion resistance by using polycaprolactone (PCL) and zinc oxide nanoparticles (ZnO NPs). The surface morphology has been characterized by confocal microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (WCA), whereas the corrosion resistance has been evaluated by Tafel polarization curves. Strict control over the input operational parameters (applied voltage, feeding rate, distance tip to collector), PCL solution concentration and amount of ZnO NPs have been analyzed in depth by showing their key role in the final surface properties. With this goal in mind, a design of experiment (DoE) has been performed in order to evaluate the optimal coating morphology in terms of fiber diameter, surface roughness (Ra), water contact angle (WCA) and corrosion rate. It has been demonstrated that the solution concentration has a significant effect on the resultant electrospun structure obtained on the collector with the formation of beaded fibers with a higher WCA value in comparison with uniform bead-free fibers (dry polymer deposition or fiber-merging aspect). In addition, the presence of ZnO NPs distributed within the electrospun fibers also plays a key role in corrosion resistance, although it also leads to a decrease in the WCA. Finally, this is the first time that an exhaustive analysis by using DoE has been evaluated for PCL/ZnO electrospun fibers with the aim to optimize the surface morphology with the better performance in terms of corrosion resistance and wettability.


2019 ◽  
Vol 90 (2) ◽  
pp. 166-178 ◽  
Author(s):  
Ji Eun Song ◽  
Artur Cavaco-Paulo ◽  
Carla Silva ◽  
Hye Rim Kim

The present study aimed to improve the properties of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. The lauryl gallate oligomerization process was conducted by laccase-mediated oligomerization. Lauryl gallate was chemically confirmed by matrix-assisted laser desorption/ionization with time-of-flight analyses. The oligomerization conditions were controlled considering the surface properties (water contact angle, surface energy, and water absorption time) of bacterial cellulose nonwoven fabrics. The controlled oligomerization conditions were 160 U/mL of laccase and 20 mM lauryl gallate. After bacterial cellulose was treated by the physical entrapment of lauryl gallate oligomers, X-ray photoelectron spectroscopy analysis showed that the N1 atomic composition (%) of bacterial cellulose increased from 0.78% to 4.32%. This indicates that the lauryl gallate oligomer molecules were introduced into the bacterial cellulose nanofiber structure. In addition, the water contact angle was measured after washing the bacterial cellulose nonwoven fabric treated by the physical entrapment of lauryl gallate oligomers for 180 minutes, and it was found to maintain a water contact angle of 88°. The durability of bacterial cellulose nonwoven fabric treated by the physical entrapment of lauryl gallate oligomers was confirmed by measuring the tensile strength after wetting and dimensional stability. As a result, the tensile strength after wetting was about five times higher and the dimensional stability was three times higher than that of untreated bacterial cellulose nonwoven fabric.


2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrzej Sikora ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Magdalena Moczała-Dusanowska ◽  
Marcin Łapiński ◽  
...  

AbstractThis paper presents the results of experimental investigations of the plasma surface modification of a poly(methyl methacrylate) (PMMA) polymer and PMMA composites with a [6,6]-phenyl-C61-butyric acid methyl ester fullerene derivative (PC61BM). An atmospheric pressure microwave (2.45 GHz) argon plasma sheet was used. The experimental parameters were: an argon (Ar) flow rate (up to 20 NL/min), microwave power (up to 530 W), number of plasma scans (up to 3) and, the kind of treated material. In order to assess the plasma effect, the possible changes in the wettability, roughness, chemical composition, and mechanical properties of the plasma-treated samples’ surfaces were evaluated by water contact angle goniometry (WCA), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The best result concerning the water contact angle reduction was from 83° to 29.7° for the PMMA material. The ageing studies of the PMMA plasma-modified surface showed long term (100 h) improved wettability. As a result of plasma treating, changes in the samples surface roughness parameters were observed, however their dependence on the number of plasma scans is irregular. The ATR-FTIR spectra of the PMMA plasma-treated surfaces showed only slight changes in comparison with the spectra of an untreated sample. The more significant differences were demonstrated by XPS measurements indicating the surface chemical composition changes after plasma treatment and revealing the oxygen to carbon ratio increase from 0.1 to 0.4.


Author(s):  
Wei Lee Lim ◽  
Shiplu Roy Chowdhury ◽  
Min Hwei Ng ◽  
Jia Xian Law

Tissue-engineered substitutes have shown great promise as a potential replacement for current tissue grafts to treat tendon/ligament injury. Herein, we have fabricated aligned polycaprolactone (PCL) and gelatin (GT) nanofibers and further evaluated their physicochemical properties and biocompatibility. PCL and GT were mixed at a ratio of 100:0, 70:30, 50:50, 30:70, 0:100, and electrospun to generate aligned nanofibers. The PCL/GT nanofibers were assessed to determine the diameter, alignment, water contact angle, degradation, and surface chemical analysis. The effects on cells were evaluated through Wharton’s jelly-derived mesenchymal stem cell (WJ-MSC) viability, alignment and tenogenic differentiation. The PCL/GT nanofibers were aligned and had a mean fiber diameter within 200–800 nm. Increasing the GT concentration reduced the water contact angle of the nanofibers. GT nanofibers alone degraded fastest, observed only within 2 days. Chemical composition analysis confirmed the presence of PCL and GT in the nanofibers. The WJ-MSCs were aligned and remained viable after 7 days with the PCL/GT nanofibers. Additionally, the PCL/GT nanofibers supported tenogenic differentiation of WJ-MSCs. The fabricated PCL/GT nanofibers have a diameter that closely resembles the native tissue’s collagen fibrils and have good biocompatibility. Thus, our study demonstrated the suitability of PCL/GT nanofibers for tendon/ligament tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document