The effect of nonwoven structure on thermomechanical properties of feather waste reinforced polyester composite

2020 ◽  
pp. 152808372094773
Author(s):  
Ouahiba Mrajji ◽  
Mohamed EL Wazna ◽  
Zineb Samouh ◽  
Abdeslam EL Bouari ◽  
Omar Cherkaoui ◽  
...  

Natural fibers offer good prospective as reinforcements in polymer composites due to their superior properties, they are preferred over synthetic fibers in various applications such as construction, automotive and aerospace. This experimental study emphasizes the effect of nonwoven structure on the mechanical, thermal and biodegradability properties of feathers nonwoven reinforced polyester composite. Vacuum molding method was adopted for manufacturing of the biocomposites with two contents of polyester resin (30% and 50%) and different composition of nonwovens. As a result, the morphological analysis revealed excellent compatibility and regular distribution of fiber in the polyester matrix. The thermal conductivity of manufactured composites varies considerably from 0.0378 W/(m•K) to 0.0778 W/(m•K) at 10°C. The origin of the variation of this property is due to differences in composition of nonwovens, densities and the percentage of the resin. After soaking for 240 h, the biodegradability test show that the kinetics of degradation of the composites decreased with the addition of nonwovens. The biodegradability rate was found between 62 to 92% depending on the sample nature. The mechanical results showed that the nonwoven structure clearly affected the performance of the composites. The results obtained from this study can be useful to develop new low cost, sustainable, light product and environmentally friendly materials.

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 265
Author(s):  
Natalia Sienkiewicz ◽  
Midhun Dominic ◽  
Jyotishkumar Parameswaranpillai

Epoxy resins as important organic matrices, thanks to their chemical structure and the possibility of modification, have unique properties, which contribute to the fact that these materials have been used in many composite industries for many years. Epoxy resins are repeatedly used in exacting applications due to their exquisite mechanical properties, thermal stability, scratch resistance, and chemical resistance. Moreover, epoxy materials also have really strong resistance to solvents, chemical attacks, and climatic aging. The presented features confirm the fact that there is a constant interest of scientists in the modification of resins and understanding its mechanisms, as well as in the development of these materials to obtain systems with the required properties. Most of the recent studies in the literature are focused on green fillers such as post-agricultural waste powder (cashew nuts powder, coconut shell powder, rice husks, date seed), grass fiber (bamboo fibers), bast/leaf fiber (hemp fibers, banana bark fibers, pineapple leaf), and other natural fibers (waste tea fibers, palm ash) as reinforcement for epoxy resins rather than traditional non-biodegradable fillers due to their sustainability, low cost, wide availability, and the use of waste, which is environmentally friendly. Furthermore, the advantages of natural fillers over traditional fillers are acceptable specific strength and modulus, lightweight, and good biodegradability, which is very desirable nowadays. Therefore, the development and progress of “green products” based on epoxy resin and natural fillers as reinforcements have been increasing. Many uses of natural plant-derived fillers include many plant wastes, such as banana bark, coconut shell, and waste peanut shell, can be found in the literature. Partially biodegradable polymers obtained by using natural fillers and epoxy polymers can successfully reduce the undesirable epoxy and synthetic fiber waste. Additionally, partially biopolymers based on epoxy resins, which will be presented in the paper, are more useful than commercial polymers due to the low cost and improved good thermomechanical properties.


Fibers ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 77 ◽  
Author(s):  
Muhammad Ahsan Ashraf ◽  
Mohammed Zwawi ◽  
Muhammad Taqi Mehran ◽  
Ramesh Kanthasamy ◽  
Ali Bahadar

The popularity of jute-based bio and hybrid composites is mainly due to an increase in environmental concerns and pollution. Jute fibers have low cost, high abundance, and reasonable mechanical properties. Research in all-natural fibers and composites have increased exponentially due to the environment concerns of the hazards of synthetic fibers-based composites. Jute based bio and hybrid composites have been extensively used in number of applications. Hybrid jute-based composites have enhanced mechanical and physical properties, reasonably better than jute fiber composites. A detailed analysis of jute-based bio and hybrid composites was carried out in this review. The primary aim of this review paper is to provide a critical analysis and to discuss all recent developments in jute-based composites. The content covers different aspects of jute-based composites, including their mechanical and physical properties, structure, morphology, chemical composition, fiber modification techniques, surface treatments, jute based hybrid composites, limitations, and applications. Jute-based composites are currently being used in a vast number of applications such as in textiles, construction, cosmetics, medical, packaging, automobile, and furniture industries.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 148 ◽  
Author(s):  
Bharathi Murugan.R ◽  
Ajit Gayke ◽  
Natarajan C ◽  
Haridharan. M.K ◽  
Murali G ◽  
...  

India is one of the largest producers of jute, its potential use in many branches of engineering should be developed for the prosperity of the nation. The recent trends in utilizing the natural fibers has increased due to its advantages over synthetic fibers due to low cost, low environment hazard and easy availability. The properties of the fiber is improved by treating the jute fiber with alkali and latex polymer. Since, very few studies been conducted using the treated jute fiber concrete, an experimental work was carried with 0.6% as optimum percentage of treated jute fibers based on the mechanical properties of concrete. The influence of flexural characteristics of concrete was compared with control beams and beams cast with fibers in whole area and also only in tension zone of beam for M20 and M25 concrete grade. The beams with fibers of whole area had better strength, stiffness characteristic than the control beam and the beam with fibers in tension zone only. The initial cracking load was increased by 12.92% and 11.23 % and ultimate load was increased by 6.94% and 7. 20% for the beams cast with fibers in whole area for M20 and M25 grade of concrete, respectively.  


2016 ◽  
Vol 869 ◽  
pp. 237-242
Author(s):  
Carlos Alberto Lopes Fonteles ◽  
Gustavo Figueiredo Brito ◽  
Laura Hecker Carvalho ◽  
Tatianny Soares Alves ◽  
Renata Barbosa

Researches in plant fiber composites have been developed with greater frequency during the last years, especially on environmental issues. The opening of the market, especially in the automotive sector, points to the replacement of synthetic additives by natural reinforcements. Characteristics such as low density and abrasiveness, superior mechanical properties and low cost are the most sought in these composites. The aim of this study was to evaluate the behavior of composites based polyester matrix and fiber of the babassu coconut epicarp, at levels of 5, 7.5 and 10% under testing of tensile strength and impact, as well as the morphology by microscopy scanning electron and water absorption. All composites were prepared raw fibers and fiber with treated with alkaline solution of 5% NaOH. As regards the mechanical properties, an increasing of the rigidity of the system was observed, and the kinetics of water absorption increased levels indicated for compounds with high content of fibrous reinforcement. By SEM there was greater interaction between fiber and matrix.


2015 ◽  
Vol 754-755 ◽  
pp. 235-239
Author(s):  
A. Zuliahani ◽  
H.D. Rozman ◽  
Abdul Rahman Rozyanty

The use of natural fiber as reinforcement in polymer composites has gained importance recently due to environmental concern and its abundance availability from agricultural crops and wood industry [1]. Many advantages offered by natural fibers over synthetic fibers include low density, greater deformability, low cost per unit volume, recyclability and biodegradability [2-3]. In addition, the mechanical properties of natural fibers such as flax, hemp, jute, sisal and kenaf are comparable with glass fiber in respect of strength and modulus [4]. Hence, many studies have been carried out to replace the synthetic fiber for composite preparation.


2016 ◽  
Vol 869 ◽  
pp. 249-254
Author(s):  
Lazaro Araújo Rohen ◽  
Anna Carolina Cerqueira Neves ◽  
Frederico Muylaert Margem ◽  
Carlos Maurício Fontes Vieira ◽  
Fabio de Oliveira Braga ◽  
...  

The use of natural fibers as reinforcement in polymer matrix composites is replacing the use of synthetic fibers, especially from an environmental standpoint. Indeed, natural fibers are biodegradable and renewable, with no aggression to the environment. Moreover, they are worldwide abundant with relatively low cost. It was found that fine fibers of sisal, with the thinnest diameters can achieve tensile strength on the order of 1000 MPa. In this work, tensile specimens were prepared with 30% in volume of sisal fibers with diameters between 0.1 and 0.10mm incorporated in a continuous and aligned way into epoxy matrix. The results showed a significant increase in tensile strength and elastic modulus of the composites as a function of the incorporated amount of thinner sisal fibers.


2014 ◽  
Vol 775-776 ◽  
pp. 183-188 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Giulio Rodrigues Altoé ◽  
Rômulo Leite Loiola ◽  
Michel Picanço Oliveira

The environmental concern is creating pressure for the substitution of energy intensive synthetic materials for natural and sustainable ones. Compared to synthetic fibers, natural fibers have shown advantages in technical aspects such as flexibility and toughness. So there is today a growing worldwide interest in the use of natural fibers. Buriti fiber extracted from the petiole of buriti palm tree (Mauritia flexuosa), presents some significant characteristic, but until now only few studies on buriti fiber were performed. This work aims to study the tensile strength of polyester composites reinforced with buriti fibers. This study was performed in relatively thinner fibers with diameters between 0.1 and 0.4 mm. Those fibers were incorporated into the polyester matrix with volume fraction from 0 to 30%. The fiber diameters were measured by a profile projector. After fracture the specimens were analyzed by scanning electron microscope (SEM). The results showed a sensible improvement in the mechanical properties. The SEM observation revealed the mechanism for this improvement.


2014 ◽  
Vol 805 ◽  
pp. 466-471
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Giulio Rodrigues Altoé ◽  
Rômulo Leite Loiola ◽  
Michel Picanço Oliveira

The environmental concern is creating pressure for the substitution of energy intensive synthetic materials for natural and sustainable ones. Compared to synthetic fibers, natural fibers have shown advantages in technical aspects such as flexibility and toughness. So there is today a growing worldwide interest in the use of natural fibers. Buriti fiber extracted from the petiole of buriti palm tree (Mauritia flexuosa), presents some significant characteristic, but until now only few studies on buriti fiber were performed. This work aims to study the tensile strength of polyester composites reinforced with buriti fibers. This study was performed in relatively thinner fibers with diameters between 0.1 and 0.4 mm. Those fibers were incorporated into the polyester matrix with volume fraction from 0 to 30%. The fiber diameters were measured by a profile projector. After fracture the specimens were analyzed by scanning electron microscope (SEM). The results showed a sensible improvement in the mechanical properties. The SEM observation revealed the mechanism for this improvement.


Natural fibers are so attracting in comparison to synthetic fibers since they exhibit good properties like the low cost, good specific mechanical properties and their requirements of low energy during production. However, natural fibers hold some drawbacks which must be consider in comparison to the synthetic fibers like their high moisture absorption, low mechanical properties, heat resistance and durability and the variation in their prices and quality. In order to choose the suitable natural fiber for the selected application, their mechanical and chemical properties can be helpful for taking the right decision. In this chapter, a wide research is done in order to provide as much as possible the available mechanical and chemical properties of natural fibers of bast, leaf, seed, stalk, and wood categories from the most trusted publications. The specific mechanical properties of natural fibers are then calculated for a better comparison at the level of composites.


2015 ◽  
Vol 766-767 ◽  
pp. 173-177
Author(s):  
J.M. Prabhudass ◽  
K. Palanikumar

Composite materials are preferred in all engineering applications, nowadays, because of their superior properties over the traditional materials. Among Composite materials, Natural fiber reinforced polymer finds rapid development in Industrial applications and many areas of research. The main advantageous features of these composites are Renewability, Biodegradability and low cost. They are less dense and also easily available. These Natural fibers replace synthetic fibers in many important applications like Automobiles, Aerospace, etc. This paper reviews the research work carried on different types of Natural fibers reinforced polymer along with their preparation and properties, especially Sisal and Banana fibers.


Sign in / Sign up

Export Citation Format

Share Document