Silencing of lncRNA MEG8 Represses the Viability, Migration, and Invasion of Wilms’ Tumor Cells through Mediating miR-23a-3p/CRK Axis

2021 ◽  
pp. 1-13
Author(s):  
Jing Shen ◽  
Qiang Shu

<b><i>Purpose:</i></b> Compelling evidence has unveiled the importance of long noncoding RNAs (lncRNAs) in malignant behavior of Wilms’ tumor (WT). Hereon, we intend to assess the function and associated molecular mechanism of lncRNA maternally expressed gene 8 (MEG8) in WT cells. <b><i>Methods:</i></b> Expression levels of MEG8, miR-23a-3p, and CT10 regulator of kinase (CRK) were determined by quantitative real-time polymerase chain reaction. Cell viability was assessed by MTT assay. Besides, wound healing assay and transwell assay were applied to examine abilities of cell migration and invasion, respectively. Dual-luciferase reporter assay was employed to test the interplay among MEG8, miR-23a-3p, and CRK. Western blot was used to detect relative protein expression of CRK. <b><i>Results:</i></b> MEG8 and CRK expression was elevated, while miR-23a-3p expression was decreased in WT tissues and cells. The histologic type, lymphatic metastasis, and National Wilms Tumor Study (NWTS) stage were associated with the expression of MEG8, miR-23a-3p, and CRK in WT patients. MEG8 knockdown or miR-23a-3p overexpression restrained WT cells in cell viability, migration, and invasiveness in vitro. As to mechanism exploration, MEG8 could directly bind to miR-23a-3p and then miR-23a-3p targeted CRK. MEG8 was inversely correlated with miR-23a-3p and positively correlated with CRK in WT tissues. Meantime, miR-23a-3p was inversely correlated with CRK in WT tissues. Additionally, MEG8 knockdown-mediated suppressive impacts on cell viability, migration, and invasiveness were reversed by overexpression of CRK or repression of miR-23a-3p in WT cells. <b><i>Conclusions:</i></b> The cell viability, migration, and invasiveness of WT cells were repressed by MEG8 knockdown via targeting the miR-23a-3p/CRK axis.

2021 ◽  
Author(s):  
zhengtuan guo ◽  
qiang yv ◽  
chunlin miao ◽  
wenan ge ◽  
peng li

Wilms tumor is the most common type of renal tumor in children. MicroRNAs (miRNA) are small non-coding RNAs that play crucial regulatory roles in tumorigenesis. We aimed to study the expression profile and function of miR-27a-5p in Wilms tumor. MiR-27a-5p expression was downregulated in human Wilms tumor tissues. Functionally, overexpression of miR-27a-5p promoted cell apoptosis of Wilms tumor cells. Furthermore, upregulated miR-27a-5p delayed xenograft Wilms tumor tumorigenesis in vivo. Bioinformatics analysis predicted miR-27-5p directly targeted to the 3’-untranslated region (UTR) of PBOV1 and luciferase reporter assay confirmed the interaction between miR-27a-5p and PBOV1. The function of PBOV1 in Wilms tumor was evaluated in vitro and knockdown of PBOV1 dampened cell migration. In addition, overexpression of PBOV1 antagonized the tumor-suppressive effect of miR-27a-5p in Wilms tumor cells. Collectively, our findings reveal the regulatory axis of miR-27-5p/PBOV1 in Wilms tumor and miR-27a-5p might serve as a novel therapeutic target in Wilms tumor.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chuanwu Fang ◽  
Xiaohong Wang ◽  
Dongliang Guo ◽  
Run Fang ◽  
Ting Zhu

Many studies have shown that there are many circular RNA (circRNA) expression abnormalities in osteosarcoma (OS), and this abnormality is related to the development of osteosarcoma. But at present, it is unclear as to what circITGA7 has in the OS and what it does. In this study, qRT-PCR was used to detect the expression of circITGA7, miR-370, and PIM1 mRNA in OS tissues and cells. The CCK-8 assay was used to detect the effect of circITGA7 on cell proliferation. Later, the transwell assay was used to detect cell migration and invasion. The dual-luciferase reporter assay confirmed the existence of the targeting relationship between circITGA7 and miR-370, and miR-370 and PIM1. We found that circITGA7 was upregulated in OS tissues and cell lines. Knockdown of circITGA7 weakened the cell’s ability to proliferate and metastasize. Furthermore, we observed that miR-370 was negatively regulated by circITGA7, while PIM1 was positively regulated by it. A functional assay validated that circITGA7 promoted OS progression via suppressing miR-370 and miR-370 affected OS proliferation and migration via PIM6 in OS. In summary, this study shows that circITGA7 promotes OS proliferation and metastasis via miR-370/PIM1.


2020 ◽  
Vol 19 ◽  
pp. 153303382098010
Author(s):  
Chuan Cheng ◽  
Huixia Li ◽  
Jiujian Zheng ◽  
Jie Xu ◽  
Peng Gao ◽  
...  

Objective: LncRNAs are non-coding RNAs exerting vital roles in the occurrence and development of various cancer types. This study tended to describe the expression pattern of FENDRR in colorectal cancer (CRC), and further investigate the role of FENDRR in CRC cell biological behaviors. Methods: Gene expression profile of colon cancer was accessed from the TCGA database, and then processed for differential analysis for identification of differentially expressed lncRNAs and miRNAs. Some in vitro experiments like qRT-PCR, MTT, colony formation assay, wound healing assay and Transwell assay were performed to assess the effect of FENDRR on cell biological behaviors. Dual-luciferase reporter assay was conducted to further validate the targeting relationship between FENDRR and miR-424-5p, and rescue experiments were carried out for determining the mechanism of FENDRR/miR-424-5p underlying the proliferation, migration and invasion of CRC cells. Results: Bioinformatics analysis suggested that FENDRR was significantly down-regulated in CRC tissue, and low FENDRR was intimately correlated to poor prognosis. FENDRR overexpression could greatly inhibit cell proliferation, migration and invasion. Besides, there was a negative correlation between FENDRR and miR-424-5p. Dual-luciferase reporter assay indicated that miR-424-5p was a direct target of FENDRR. Rescue experiments discovered that FENDRR exerted its role in cell proliferation, migration and invasion in CRC via targeting miR-424-5p. Conclusion: FENDRR is poorly expressed in CRC tissue and cells, and low FENDRR is responsible for the inhibition of cell proliferation, migration and invasion of CRC by means of targeting miR-424-5p.


2020 ◽  
Author(s):  
Hao Xu ◽  
Xin Miao ◽  
Xin Li ◽  
Haofei Chen ◽  
Bo Zhang ◽  
...  

Abstract Background: It is reported that lncRNA SNHG16 is significantly highly expressed in pancreatic cancer (PC). However, the functions and mechanisms of SNHG16 are not clear. The aim of this study was to explore the effects of SNHG16 in PC.Methods: qRT-PCR analyze was applied to detect the expression levels of SNHG16, miR-302b-3p and SLC2A4 in PC tissues and cells. CCK8 and EdU assays were used to determine the proliferation of PC cells. Transwell assay were used to measure the capacities of PC cells migration and invasion. Apoptosis were evaluated by flow cytometry, and the expression of apoptosis related proteins (including Bax, Bcl-2, cleaved caspase-3 and cleaved caspase-9), which were tested by western blot. The interactions between miR-302b-3p and SNHG16 or miR-302b-3p and SLC2A4 mRNA 3’UTR were clarified by Dual luciferase reporter assay and RNA immunoprecipitation.Results: SNHG16 was significantly elevated in PC tissues and cell lines, which was associated with poor prognosis of PC patients. Knockdown of SNHG16 reduced PC cells proliferation, migration and invasion. SNHG16 acted as a sponge to regulate miR-302b-3p expression in PC cells. And miR-302b-3p targeted SLC2A4 directly. Conclusions: SNHG16 promoted the progression of PC via miR-302b-3p/SLC2A4 axis and was expected to be a potential target for early diagnosis and treatment of PC.


2020 ◽  
Author(s):  
Fan Yuning ◽  
Chen Liang ◽  
Wang Tenghuan ◽  
Nan Zhenhua ◽  
Shengkai Gong

Abstract The aim of the study was to explore the function and mechanism of lincRNA PADNA in bupivacaine-induced neurotoxicity. Mouse DRG neurons were cultured in vitro and treated with bupivacaine to establish the neurotoxicity model. Caspase3 activity, cell viability, tunel assay were analyzed to assess the role of lincRNA PADNA. Dual-luciferase reporter assay was used to determine the binding target of lincRNA PANDA. The expression of lincRNA PADNA was significantly increased with the increasing concentration of bupivacaine. Functional analysis revealed that knockdown of lincRNA PADNA accelerated the caspase3 activity and inhibited the cell viability. Western blot showed that knockdown of lincRNA PADNA promoted the occurrence of cleaved-caspase3. We also proved that lincRNA PADNA may bind with miR-194. Overexpression of miR-194 could rescued the function of lincRNA PADNA, suggesting that lincRNA PADNA may sponge miR-194. In addition, we provided new evidences that lincRNA PADNA/miR-194/FBXW7 axis play an important role in the neurotoxicity process. We performed comprehensive experiments to verify the function and mechanism of lincRNA PADNA in bupivacaine-induced neurotoxicity. Our study provided new evidences and clues for prevention of neurotoxicity.


Open Biology ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 190074 ◽  
Author(s):  
Kerui Cai ◽  
Tieling Li ◽  
Ling Guo ◽  
Haifeng Guo ◽  
Wei Zhu ◽  
...  

The aim of this study was to analyse the expression pattern and elucidate the mechanistic involvement of long non-coding RNA LINC00467 in hepatocellular carcinoma (HCC). The relative expression of LINC00467 and microRNA (miR)-9-5p was determined by real-time polymerase chain reaction. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell proliferation was analysed by cell counting. Cell migration and invasion were monitored by Transwell assay. The luciferase reporter assay was employed to investigate the regulatory effect of miR-9-5p on LINC00467 and peroxisome proliferator-activated receptor alpha (PPARA). The endogenous PPARA protein was quantified by western blotting. It was found that LINC00467 was aberrantly decreased in HCC. The ectopic expression of LINC00467 significantly suppressed cell viability, proliferation, migration and invasion. LINC00467 functioned as a sponge for miR-9-5a and negatively regulated miR-9-5p expression. We also identified PPARA as the direct target of miR-9-5p. siRNA-mediated knockdown of PPARA in LINC00467-proficient cells promoted cell viability, migration and invasion. Our data indicate the critical involvement of LINC00467/miR-9-5p/PPARA signalling in the incidence and progression of HCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
LiPan Peng ◽  
ZeZhong Chen ◽  
GuangChuan Wang ◽  
ShuBo Tian ◽  
Shuai Kong ◽  
...  

Abstract Background Long noncoding RNAs (LncRNAs) have been reported to critically regulate gastric cancer (GC). Recently, it was reported that LBX2 antisense RNA 1 (LBX2-AS1) is abnormally expressed in GC. However, the role of LBX2-AS1 in the malignancy of GC is worth further discussion. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the LBX2-AS1, miR-4766-5p and C-X-C motif chemokine (CXCL5) expression in GC tissues and cells. Dual-luciferase reporter assay was applied to examine the target relationship between LBX2-AS1 and miR-4766-5p or miR-4766-5p and CXCL5. Cell counting kit-8 (CCK-8) and Transwell assays were used to detect cell proliferation, migration and invasion rates. The protein expression of CXCL5 was confirmed using western blot. The RNA pull down experiment was used to verify the specificity of LBX2-AS1 and miR-4766-5p on BGC-823 and SGC-7901 cells. Results LBX2-AS1 was up-regulated in GC tissues and cells, and its knockdown suppressed proliferation, migration and invasion of GC cells. While, overexpression of LBX2-AS1 increased proliferation and increased CXCL5 mRNA level. CXCL5 improved cell proliferation, migration and invasion of GC cells. LBX2-AS1 could bind to miR-4766-5p to regulate CXCL5 expression. Overexpression of CXCL5 overturned those effects of miR-4766-5p in GC cells. RNA Pull down shown that BGC-823 and SGC-7901 cells, miR-4766-5p specifically binds to LBX2-AS1. Conclusions In short, this study demonstrated that LBX2-AS1 promoted proliferation, migration and invasion through up-regulation CXCL5 mediated by miR-4766-5p in GC. The LBX2-AS1/miR-4766-5p/CXCL5 regulatory axis provides a theoretical basis for the research on lncRNA-directed therapeutics in GC.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jie Li ◽  
Songlin Zhang ◽  
Lei Wu ◽  
Meili Pei ◽  
Yu Jiang

AbstractOvarian cancer is the first leading cause of death in gynecological cancers. The continuous survival and metastasis of cancer cells are the main causes of death and poor prognosis in patients with ovarian cancer. Berberine is an effective component extracted from the rhizomes of coptis chinensis and phellodendron chinensis. In our study, we aim to explore the molecular mechanism underlying the regulation of proliferation, migration and invasion by berberine in ovarian cancer cells. CCK8 assay was used for detection of proliferative capacity of SKOV3 and 3AO cells. Wound healing assay was used to estimate cell migration and transwell assay was used to assess cell invasion. The mRNA expression of miR-145 and MMP16 were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The protein level of MMP16 was detected by western blot analysis. In addition, luciferase reporter assays were used to demonstrate MMP16 was a target of miR-145. The results demonstrated berberine inhibited proliferation, migration and invasion, promoted miR-145 expression, and decreased MMP16 expression in SKOV3 and 3AO cells. MMP16 was a target of miR-145. Moreover, downregulation of MMP16 contributed to the inhibition of proliferation, migration and invasion by berberine. Together, our results revealed that berberine inhibited proliferation, migration and invasion through miR-145/MMP16 in SKOV3 and 3AO cells, highlighting the potentiality of berberine to be used as a therapeutic agent for ovarian cancer.


2021 ◽  
Author(s):  
Lijun Zheng ◽  
Qiongzhen Ren ◽  
Weipei Zhu ◽  
Xiaomin Tao ◽  
Liangsheng Guo

Abstract Background: In the present study, a new tumor suppressor function of miR-4319 was disclosed in CC. Methods: Up-regulation of miR-4319 suppressed cell viability, proliferation, migration, invasion, and induced cell apoptosis in CC cells were measured by cell transfection, CCK-8, colony formation, EdU, flow cytometer, wound healing, transwell migration and invasion and western blot assays. Moreover, Tuftelin 1 (TUFT1) was verified as a direct target of miR-4319 by binding its 3’-UTR, confirmed by dual-luciferase reporter assay. Result: The expression of miR-4319 was obviously decreased in clinical CC tissues and CC cell lines.TUFT1 was remarkably increased in clinical CC tissues and CC cell lines, and was negatively associated with miR-4319 expression. Furthermore, over-expression of TUFT1 partially restored the effects of miR-4319 mimic on cell viability, proliferation, migration, invasion, and cell apoptosis in CC cells. Conclusion: miR-4319 played an anti-cancer role in the occurrence and development of CC, which might be achieved by targeting TUFT1.


2020 ◽  
Vol 19 ◽  
pp. 153303382096747
Author(s):  
Ming-Zhi Cai ◽  
Shao-Yan Wen ◽  
Xue-Jun Wang ◽  
Yong Liu ◽  
Han Liang

Plant homeodomain finger protein 8 (PHF8) has been reported to participate in cancer development and metastasis of various types of tumors. However, little is known about the functional mechanism of PHF8 in gastric cancer (GC). This study aimed to explore the PHF8 expression pattern and function, and the role of the MYC/miRNA/PHF8 axis in GC. PHF8 expression was upregulated in GC tissues and cells as measured using quantitative reverse transcription polymerase chain reaction and western blotting. PHF8 knockdown suppressed the proliferation, migration, and invasion of GC cells, as determined using the CCK-8 assay and Transwell assay. MicroRNA-22-3p targeted PHF8, as verified by a dual-luciferase reporter assay. MYC upregulated the protein expression of PHF8 but had no effect on PHF8 mRNA expression. MYC regulates PHF8 by affecting the stability of miR-22-3p. We identified a novel MYC/miR-22-3p/PHF8 regulatory axis in GC. Therefore, PHF8 may provide a new therapeutic target for patients with GC.


Sign in / Sign up

Export Citation Format

Share Document