scholarly journals Wheel fault diagnosis model based on multichannel attention and supervised contrastive learning

2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110670
Author(s):  
Yanxiang Chen ◽  
Zuxing Zhao ◽  
Euiyoul Kim ◽  
Haiyang Liu ◽  
Juan Xu ◽  
...  

As wheels are important components of train operation, diagnosing and predicting wheel faults are essential to ensure the reliability of rail transit. Currently, the existing studies always separately deal with two main types of wheel faults, namely wheel radius difference and wheel flat, even though they are both reflected by wheel radius changes. Moreover, traditional diagnostic methods, such as mechanical methods or a combination of data analysis methods, have limited abilities to efficiently extract data features. Deep learning models have become useful tools to automatically learn features from raw vibration signals. However, research on improving the feature-learning capabilities of models under noise interference to yield higher wheel diagnostic accuracies has not yet been conducted. In this paper, a unified training framework with the same model architecture and loss function is established for two homologous wheel faults. After selecting deep residual networks (ResNets) as the backbone network to build the model, we add the squeeze and excitation (SE) module based on a multichannel attention mechanism to the backbone network to learn the global relationships among feature channels. Then the influence of noise interference features is reduced while the extraction of useful information features is enhanced, leading to the improved feature-learning ability of ResNet. To further obtain effective feature representation using the model, we introduce supervised contrastive loss (SCL) on the basis of ResNet + SE to enlarge the feature distances of different fault classes through a comparison between positive and negative examples under label supervision to obtain a better class differentiation and higher diagnostic accuracy. We also complete a regression task to predict the fault degrees of wheel radius difference and wheel flat without changing the network architecture. The extensive experimental results show that the proposed model has a high accuracy in diagnosing and predicting two types of wheel faults.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Shangfang Li

Effective feature representation is the key to success of machine learning applications. Recently, many feature learning models have been proposed. Among these models, the Gaussian process latent variable model (GPLVM) for nonlinear feature learning has received much attention because of its superior performance. However, most of the existing GPLVMs are mainly designed for classification and regression tasks, thus cannot be used in data clustering task. To address this issue and extend the application scope, this paper proposes a novel GPLVM for clustering (C-GPLVM). Specifically, by combining GPLVM with the subspace clustering method, our C-GPLVM can obtain more representative latent variable for clustering. Moreover, it can directly predict the new samples by introducing a back constraint in the model, thus being more suitable for big data learning tasks such as analysis of chaotic time series and so on. In the experiment, we compare it with the related GPLVMs and clustering algorithms. The experimental results show that the proposed model not only inherits the feature learning ability of GPLVM but also has superior clustering accuracy.


Author(s):  
OLFA JEMAI ◽  
MOURAD ZAIED ◽  
CHOKRI BEN AMAR ◽  
MOHAMED ADEL ALIMI

Taking advantage of both the scaling property of wavelets and the high learning ability of neural networks, wavelet networks have recently emerged as a powerful tool in many applications in the field of signal processing such as data compression, function approximation as well as image recognition and classification. A novel wavelet network-based method for image classification is presented in this paper. The method combines the Orthogonal Least Squares algorithm (OLS) with the Pyramidal Beta Wavelet Network architecture (PBWN). First, the structure of the Pyramidal Beta Wavelet Network is proposed and the OLS method is used to design it by presetting the widths of the hidden units in PBWN. Then, to enhance the performance of the obtained PBWN, a novel learning algorithm based on orthogonal least squares and frames theory is proposed, in which we use OLS to select the hidden nodes. In the simulation part, the proposed method is employed to classify colour images. Comparisons with some typical wavelet networks are presented and discussed. Simulations also show that the PBWN-orthogonal least squares (PBWN-OLS) algorithm, which combines PBWN with the OLS algorithm, results in better performance for colour image classification.


Author(s):  
Yan Bai ◽  
Yihang Lou ◽  
Yongxing Dai ◽  
Jun Liu ◽  
Ziqian Chen ◽  
...  

Vehicle Re-Identification (ReID) has attracted lots of research efforts due to its great significance to the public security. In vehicle ReID, we aim to learn features that are powerful in discriminating subtle differences between vehicles which are visually similar, and also robust against different orientations of the same vehicle. However, these two characteristics are hard to be encapsulated into a single feature representation simultaneously with unified supervision. Here we propose a Disentangled Feature Learning Network (DFLNet) to learn orientation specific and common features concurrently, which are discriminative at details and invariant to orientations, respectively. Moreover, to effectively use these two types of features for ReID, we further design a feature metric alignment scheme to ensure the consistency of the metric scales. The experiments show the effectiveness of our method that achieves state-of-the-art performance on three challenging datasets.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jifeng Guo ◽  
Zhiqi Pang ◽  
Wenbo Sun ◽  
Shi Li ◽  
Yu Chen

Active learning aims to select the most valuable unlabelled samples for annotation. In this paper, we propose a redundancy removal adversarial active learning (RRAAL) method based on norm online uncertainty indicator, which selects samples based on their distribution, uncertainty, and redundancy. RRAAL includes a representation generator, state discriminator, and redundancy removal module (RRM). The purpose of the representation generator is to learn the feature representation of a sample, and the state discriminator predicts the state of the feature vector after concatenation. We added a sample discriminator to the representation generator to improve the representation learning ability of the generator and designed a norm online uncertainty indicator (Norm-OUI) to provide a more accurate uncertainty score for the state discriminator. In addition, we designed an RRM based on a greedy algorithm to reduce the number of redundant samples in the labelled pool. The experimental results on four datasets show that the state discriminator, Norm-OUI, and RRM can improve the performance of RRAAL, and RRAAL outperforms the previous state-of-the-art active learning methods.


2020 ◽  
Vol 12 (4) ◽  
pp. 655
Author(s):  
Chu He ◽  
Mingxia Tu ◽  
Dehui Xiong ◽  
Mingsheng Liao

Synthetic Aperture Rradar (SAR) provides rich ground information for remote sensing survey and can be used all time and in all weather conditions. Polarimetric SAR (PolSAR) can further reveal surface scattering difference and improve radar’s application ability. Most existing classification methods for PolSAR imagery are based on manual features, such methods with fixed pattern has poor data adaptability and low feature utilization, if directly input to the classifier. Therefore, combining PolSAR data characteristics and deep network with auto-feature learning ability forms a new breakthrough direction. In fact, feature learning of deep network is to realize function approximation from data to label, through multi-layer accumulation, but finite layers limit the network’s mapping ability. According to manifold hypothesis, high-dimensional data exists in potential low-dimensional manifold and different types of data locates in different manifolds. Manifold learning can model core variables of the target, and separate different data’s manifold as much as possible, so as to complete data classification better. Therefore, taking manifold hypothesis as a starting point, nonlinear manifold learning integrated with fully convolutional networks for PolSAR image classification method is proposed in this paper. Firstly, high-dimensional polarized features are extracted based on scattering matrix and coherence matrix of original PolSAR data, whose compact representation is mined by manifold learning. Meanwhile, drawing on transfer learning, pre-trained Fully Convolutional Networks (FCN) model is utilized to learn deep spatial features of PolSAR imagery. Considering complementary advantages, weighted strategy is adopted to embed manifold representation into deep spatial features, which are input into support vector machine (SVM) classifier for final classification. A series of experiments on three PolSAR datasets have verified effectiveness and superiority of the proposed classification algorithm.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Ming-xin Jiang ◽  
Xian-xian Luo ◽  
Tao Hai ◽  
Hai-yan Wang ◽  
Song Yang ◽  
...  

Visual object tracking is a fundamental component in many computer vision applications. Extracting robust features of object is one of the most important steps in tracking. As trackers, only formulated on RGB data, are usually affected by occlusions, appearance, or illumination variations, we propose a novel RGB-D tracking method based on genetic feature learning in this paper. Our approach addresses feature learning as an optimization problem. As owning the advantage of parallel computing, genetic algorithm (GA) has fast speed of convergence and excellent global optimization performance. At the same time, unlike handcrafted feature and deep learning methods, GA can be employed to solve the problem of feature representation without prior knowledge, and it has no use for a large number of parameters to be learned. The candidate solution in RGB or depth modality is represented as an encoding of an image in GA, and genetic feature is learned through population initialization, fitness evaluation, selection, crossover, and mutation. The proposed RGB-D tracker is evaluated on popular benchmark dataset, and experimental results indicate that our method achieves higher accuracy and faster tracking speed.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6762
Author(s):  
Jung Hyuk Lee ◽  
Geon Woo Lee ◽  
Guiyoung Bong ◽  
Hee Jeong Yoo ◽  
Hong Kook Kim

Autism spectrum disorder (ASD) is a developmental disorder with a life-span disability. While diagnostic instruments have been developed and qualified based on the accuracy of the discrimination of children with ASD from typical development (TD) children, the stability of such procedures can be disrupted by limitations pertaining to time expenses and the subjectivity of clinicians. Consequently, automated diagnostic methods have been developed for acquiring objective measures of autism, and in various fields of research, vocal characteristics have not only been reported as distinctive characteristics by clinicians, but have also shown promising performance in several studies utilizing deep learning models based on the automated discrimination of children with ASD from children with TD. However, difficulties still exist in terms of the characteristics of the data, the complexity of the analysis, and the lack of arranged data caused by the low accessibility for diagnosis and the need to secure anonymity. In order to address these issues, we introduce a pre-trained feature extraction auto-encoder model and a joint optimization scheme, which can achieve robustness for widely distributed and unrefined data using a deep-learning-based method for the detection of autism that utilizes various models. By adopting this auto-encoder-based feature extraction and joint optimization in the extended version of the Geneva minimalistic acoustic parameter set (eGeMAPS) speech feature data set, we acquire improved performance in the detection of ASD in infants compared to the raw data set.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Hao Zhang ◽  
Qiang Zhang ◽  
Siyu Shao ◽  
Tianlin Niu ◽  
Xinyu Yang ◽  
...  

Deep learning has a strong feature learning ability, which has proved its effectiveness in fault prediction and remaining useful life prediction of rotatory machine. However, training a deep network from scratch requires a large amount of training data and is time-consuming. In the practical model training process, it is difficult for the deep model to converge when the parameter initialization is inappropriate, which results in poor prediction performance. In this paper, a novel deep learning framework is proposed to predict the remaining useful life of rotatory machine with high accuracy. Firstly, model parameters and feature learning ability of the pretrained model are transferred to the new network by means of transfer learning to achieve reasonable initialization. Then, the specific sensor signals are converted to RGB image as the specific task data to fine-tune the parameters of the high-level network structure. The features extracted from the pretrained network are the input into the Bidirectional Long Short-Term Memory to obtain the RUL prediction results. The ability of LSTM to model sequence signals and the dynamic learning ability of bidirectional propagation to time information contribute to accurate RUL prediction. Finally, the deep model proposed in this paper is tested on the sensor signal dataset of bearing and gearbox. The high accuracy prediction results show the superiority of the transfer learning-based sequential network in RUL prediction.


2020 ◽  
Vol 39 (4) ◽  
pp. 5253-5262
Author(s):  
Xiaoxian Zhang ◽  
Jianpei Zhang ◽  
Jing Yang

The problems caused by network dimension disasters and computational complexity have become an important issue to be solved in the field of social network research. The existing methods for network feature learning are mostly based on static and small-scale assumptions, and there is no modified learning for the unique attributes of social networks. Therefore, existing learning methods cannot adapt to the dynamic and large-scale of current social networks. Even super large scale and other features. This paper mainly studies the feature representation learning of large-scale dynamic social network structure. In this paper, the positive and negative damping sampling of network nodes in different classes is carried out, and the dynamic feature learning method for newly added nodes is constructed, which makes the model feasible for the extraction of structural features of large-scale social networks in the process of dynamic change. The obtained node feature representation has better dynamic robustness. By selecting the real datasets of three large-scale dynamic social networks and the experiments of dynamic link prediction in social networks, it is found that DNPS has achieved a large performance improvement over the benchmark model in terms of prediction accuracy and time efficiency. When the α value is around 0.7, the model effect is optimal.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4522
Author(s):  
Xihui Chen ◽  
Aimin Ji ◽  
Gang Cheng

Planetary gear is the key component of the transmission system of electromechanical equipment for energy industry, and it is easy to damage, which affects the reliability and operation efficiency of electromechanical equipment of energy industry. Therefore, it is of great significance to extract the useful fault features and diagnose faults based on raw vibration signals. In this paper, a novel deep feature learning method based on the fused-stacked autoencoders (AEs) for planetary gear fault diagnosis was proposed. First, to improve the data learning ability and the robustness of feature extraction process of AE model, the sparse autoencoder (SAE) and the contractive autoencoder (CAE) were studied, respectively. Then, the quantum ant colony algorithm (QACA) was used to optimize the specific location and key parameters of SAEs and CAEs in deep learning architecture, and multiple SAEs and multiple CAEs were stacked alternately to form a novel deep learning architecture, which gave the deep learning architecture better data learning ability and robustness of feature extraction. The experimental results show that the proposed method can address the raw vibration signals of planetary gear. Compared with other deep learning architectures and shallow learning architecture, the proposed method has better diagnosis performance, and it is an effective method of deep feature learning and fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document