scholarly journals Fetal microchimerism and implications for maternal health

2019 ◽  
Vol 13 (3) ◽  
pp. 112-119 ◽  
Author(s):  
Heidi ES Fjeldstad ◽  
Guro M Johnsen ◽  
Anne Cathrine Staff

This review paper outlines the definition, pathophysiology, and potential maternal health consequences of cellular fetal microchimerism, the maternal acquisition of intact cells of fetal origin during pregnancy. Increased rates and amounts of cellular fetal microchimerism are associated with several placental syndromes, including preeclampsia and fetal growth restriction. The discovery of cellular fetal microchimerism and methods of detection are briefly outlined, and we present the mechanisms hypothesized to govern pregnancy-related and long-term maternal health effects of cellular fetal microchimerism. Specifically, we discuss the potential implications of cellular fetal microchimerism in wound healing, autoimmunity, cancer, and possibly cardiovascular disease. Cellular fetal microchimerism represents a novel area of research on maternal and transgenerational health and disease, providing exciting opportunities for developing new disease biomarkers and precision medicine with targeted prophylaxis against long-term maternal disease.

2019 ◽  
Vol 317 (2) ◽  
pp. H387-H394 ◽  
Author(s):  
Christy-Lynn M. Cooke ◽  
Sandra T. Davidge

Delaying pregnancy, which is on the rise, may increase the risk of cardiovascular disease in both women and their children. The physiological mechanisms that lead to these effects are not fully understood but may involve inadequate adaptations of the maternal cardiovascular system to pregnancy. Indeed, there is abundant evidence in the literature that a fetus developing in a suboptimal in utero environment (such as in pregnancies complicated by fetal growth restriction, preterm birth, and/or preeclampsia) is at an increased risk of cardiovascular disease in adulthood, the developmental origins of health and disease theory. Although women of advanced age are at a significantly increased risk of pregnancy complications, there is limited information as to whether advanced maternal age constitutes an added stressor on the prenatal environment of the fetus, and whether or not this is secondary to impaired cardiovascular function during pregnancy. This review summarizes the current literature available on the impact of advanced maternal age on cardiovascular adaptations to pregnancy and the role of maternal age on long-term health risks for both the mother and offspring.


2016 ◽  
Vol 130 (8) ◽  
pp. 551-563 ◽  
Author(s):  
Stacy Westerman ◽  
Nanette K. Wenger

For many years the significance of heart disease in women was vastly underappreciated, and women were significantly underrepresented in cardiovascular clinical research. We now know that cardiovascular disease is the leading cause of death for women. Women and men share many similarities in the pathophysiology and manifestations of heart disease. However, as research advances with the continued inclusion of more women, knowledge about gender differences between the female and male heart, both on a physiological and pathophysiological basis, grows. These differences can be found in all domains of cardiovascular health and disease, including heart rhythm, heart failure, coronary disease and valvular disease. Further understanding of gender differences in the heart is crucial for advancing our ability to maintain a healthy population and identify and treat heart disease in both women and men. Specific examples within the spectrum of heart disease will be discussed in this review paper, and areas for further research will be proposed.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2281
Author(s):  
Fatemeh Sarhaddi ◽  
Iman Azimi ◽  
Sina Labbaf ◽  
Hannakaisa Niela-Vilén ◽  
Nikil Dutt ◽  
...  

Pregnancy is a unique time when many mothers gain awareness of their lifestyle and its impacts on the fetus. High-quality care during pregnancy is needed to identify possible complications early and ensure the mother’s and her unborn baby’s health and well-being. Different studies have thus far proposed maternal health monitoring systems. However, they are designed for a specific health problem or are limited to questionnaires and short-term data collection methods. Moreover, the requirements and challenges have not been evaluated in long-term studies. Maternal health necessitates a comprehensive framework enabling continuous monitoring of pregnant women. In this paper, we present an Internet-of-Things (IoT)-based system to provide ubiquitous maternal health monitoring during pregnancy and postpartum. The system consists of various data collectors to track the mother’s condition, including stress, sleep, and physical activity. We carried out the full system implementation and conducted a real human subject study on pregnant women in Southwestern Finland. We then evaluated the system’s feasibility, energy efficiency, and data reliability. Our results show that the implemented system is feasible in terms of system usage during nine months. We also indicate the smartwatch, used in our study, has acceptable energy efficiency in long-term monitoring and is able to collect reliable photoplethysmography data. Finally, we discuss the integration of the presented system with the current healthcare system.


2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


2021 ◽  
Vol 9 (6) ◽  
pp. 1311
Author(s):  
Xiuqin Chen ◽  
Eric Banan-Mwine Daliri ◽  
Akanksha Tyagi ◽  
Deog-Hwan Oh

The initiation and development of cariogenic (that is, caries-related) biofilms are the result of the disruption of homeostasis in the oral microenvironment. There is a daily accumulation of dental biofilm on the surface of teeth and its matrix of extracellular polymers supports the host in its defense against invading microbes, thus helping to achieve oral microbial homeostasis. However, the homeostasis can be broken down under certain circumstances such as during long-term exposure to a low pH environment which results in the dominance of acidogenic and acid-tolerating species in the dental biofilm and, thus, triggers the shift of harmless biofilm to an acidic one. This work aims to explore microbial diversity and the quorum sensing of dental biofilm and their important contributions to oral health and disease. The complex and multispecies ecosystems of the cariogenic biofilm pose significant challenges for the modulation of the oral microenvironment. Promising treatment strategies are those that target cariogenic niches with high specificity without disrupting the balance of the surrounding oral microbiota. Here, we summarized the recent advances in modulating cariogenic biofilm and/or controlling its pathogenic traits.


2021 ◽  
Vol 10 (8) ◽  
pp. 1584
Author(s):  
Małgorzata Chlabicz ◽  
Jacek Jamiołkowski ◽  
Wojciech Łaguna ◽  
Paweł Sowa ◽  
Marlena Paniczko ◽  
...  

Background: Cardiovascular disease (CVD) is a major, worldwide problem that remains the dominant cause of premature mortality in the world, and increasing rates of dysglycaemia are a major contributor to its development. The aim of this study was to investigate the cardiometabolic profile among patients in particular cardiovascular risk classes, and to estimate their long term CV risk. Methods: A total of 931 individuals aged 20–79 were included. The study population was divided into CV risk classes according to the latest European Society of Cardiology recommendations. Results: Most of the analyzed anthropometric, body composition and laboratory parameters did not differ between the moderate and high CV risk participants. Interestingly, estimating the lifetime risk of myocardial infarction, stroke or CV death, using the LIFEtime-perspective model for individualizing CardioVascular Disease prevention strategies in apparently healthy people, yielded similar results in moderate and high CV risk classes. Conclusion: The participants who belonged to moderate and high CV risk classes had very similar unfavorable cardiometabolic profiles, which may result in similar lifetime CV risk. This may imply the need for more aggressive pharmacological and non-pharmacological management of CV risk factors in the moderate CV risk population, who are often unaware of their situation. New prospective population studies are necessary to establish the true cardiovascular risk profiles in a changing society.


Sign in / Sign up

Export Citation Format

Share Document